
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

VISION-BASED NAVIGATION
FOR

AUTONOMOUS LANDING OF
UNMANNED AERIAL VEHICLES

by

Paul A. Ghyzel

September 2000

Thesis Advisors: Isaac. I. Kaminer
Oleg A. Yakimenko

Approved for public release; distribution is unlimited.

DTIC QUALITY im®M!Bffl) 4

20001127 127

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
September 2000

3. REPORT TYPE AND DATES COVERED
Engineer's Thesis

4. TITLE AND SUBTITLE

Vision-Based Navigation for Autonomous Landing of Unmanned Aerial Vehicles

6. AUTHOR(S)
Ghyzel, Paul A.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13 ABSTRACT (maximum 200 words)
The role of Unmanned Aerial Vehicles (UAV) for modern military operations is expected to expand in the 21st

Century, including increased deployment of UAVs from Navy ships at sea. Autonomous operation of UAVs from ships at sea
requires the UAV to land on a moving ship using only passive sensors installed in the UAV. This thesis investigates the
feasibility of using passive vision sensors installed in the UAV to estimate the UAV position relative to the moving platform. A
navigation algorithm based on photogrammetry and perspective estimation is presented for numerically determining the relative
position and orientation of an aircraft with respect to a ship that possesses three visibly significant points with known separation
distances. Original image processing algorithms that reliably locate visually significant features in monochrome images are
developed. Monochrome video imagery collected during flight test with an infrared video camera mounted in the nose of a UAV
during actual landing approaches is presented. The navigation and image processing algorithms are combined to reduce the flight
test images into vehicle position estimates. These position estimates are compared to truth data to demonstrate the feasibility of
passive, vision-based sensors for aircraft navigation. Conclusions are drawn, and recommendations for further study are
presented.

14. SUBJECT TERMS
Unmanned Aerial Vehicle, Navigation, Infrared Imaging, Image Processing, MATLAB , Simulation

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT
Unclassified

15. NUMBER OF
PAGES 132

16. PRICE CODE

20. LIMITATION OF
ABSTRACT

UL

THIS PAGE INTENTIONALLY LEFT BLANK

Approved for public release; distribution is unlimited

VISION-BASED NAVIGATION
FOR

AUTONOMOUS LANDING OF UNMANNED AERIAL VEHICLES

Paul A. Ghyzel
Lieutenant Commander, United States Navy
B.S., United States Naval Academy, 1989

Submitted in partial fulfillment of the
requirements for the degrees of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING
and

AERONAUTICAL AND ASTRONAUTICAL ENGINEER

from the

NAVAL POSTGRADUATE SCHOOL
September 2000

Author:

Approved by:

^/£c*s*-:FzfiZ0^-
Maximilian F. Platzer, Chairman

Department of Aeronautics and Astronautics

HI

THIS PAGE INTENTIONALLY LEFT BLANK

IV

ABSTRACT

The role of Unmanned Aerial Vehicles (UAV) for modern military operations is

expected to expand in the 21st Century, including increased deployment of UAVs from

Navy ships at sea. Autonomous operation of UAVs from ships at sea requires the UAV

to land on a moving ship using only passive sensors installed in the UAV. This thesis

investigates the feasibility of using passive vision sensors installed in the UAV to

estimate the UAV position relative to the moving platform. A navigation algorithm

based on photogrammetry and perspective estimation is presented for numerically

determining the relative position and orientation of an aircraft with respect to a ship that

possesses three visibly significant points with known separation distances. Original

image processing algorithms that reliably locate visually significant features in

monochrome images are developed. Monochrome video imagery collected during flight

test with an infrared video camera mounted in the nose of a UAV during actual landing

approaches is presented. The navigation and image processing algorithms are combined

to reduce the flight test images into vehicle position estimates. These position estimates

are compared to truth data to demonstrate the feasibility of passive, vision-based sensors

for aircraft navigation. Conclusions are drawn, and recommendations for further study

are presented.

THIS PAGE INTENTIONALLY LEFT BLANK

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. VISION-BASED NAVIGATION 1
B. PURPOSE 3

II. NAVIGATION USING PASSIVE SENSORS 5

A. POSITION AND VELOCITY ESTIMATION 5
1. Inertial Navigation System (rNS) 5
2. Global Positioning System (GPS) 6
3. Air Data Systems 6
4. Vision-based Sensors 7

B. COORDINATE SYSTEMS 7
1. Geodetic Coordinate System 7
2. Earth Centered Earth Fixed 8
3. Local Tangent Plane 8
4. Body Reference Frame 9
5. Camera Reference Frame 11
6. Image Plane Reference Frame 12

IE. THREE POINT POSE ESTIMATION PROBLEM 13

A. PROBLEM FORMULATION 13
B. GRUNERT'S SOLUTION 14
C. NUMERICAL THREE-POINT ALGORITHM 16

1. Problem Formulation 16
2. Numerical Algorithm 18

IV. IMAGE PROCESSING 21

A. PURPOSE 21
B. METHODOLGY 21

1. Bisection Thresholding 23
2. Polynomial-Difference 29
3. Sliding Average 38

C. COMPARISON OF METHODS 40
1. Initial Coordinate Determination 40
2. Successive Coordinate Determination 42

D. IMPLEMENTATION 49
1. Introduction 49
2. Image Capture and Storage 51
3. Program Structure 51
4. Image Loading and Normalization 52
5. First Image 53
6. Successive Images 58

Vll

7. Image Plane Coordinates 61
8. Data Transformation and Storage 65
9. Integration with the Three Point Algorithm 66

V. FLIGHT TEST 69

A. UNMANNED AERIAL VEHICLE DESCRIPTION 69
1. Airframe Description 69
2. Sensor Description 70

B. FLIGHT PROFILES 74

VI. RESULTS 77

A. POST FLIGHT PROCESSING 77
B. SPOT LOCATION 77
C. COMPARISON WITH DGPS 78

VII. CONCLUSIONS AND RECOMMENDATIONS 81

A. CONCLUSIONS 81
1. General 81
2. Specific 81

B. RECOMMENDATIONS 83
1. Future Investigations 83
2. Flight Test 83
3. UAV Enhancements 84

VIE. REAL-TIME CONTROLLER HARDWARE INTERFACE 85

A. INTRODUCTION 85
B. SUMMARY OF PREVIOUS WORK 86
C. REAL-TIME CONTROLLER 87

1. Rapid Flight Test Prototype System Ground Station 87
2. MATRDC-X® Software Family 88
3. AC-104 System Description 90

LIST OF REFERENCES 95

APPENDDC A. DOCUMENTED MATLAB CODE 97

INITIAL DISTRIBUTION LIST 115

vin

LIST OF FIGURES

Figure 1. ECEF and Local Tangent Plane Coordinate System [Ref. 3] 9
Figure 2. Aircraft Body Reference Frame [Ref. 4] 10
Figure 3. Camera Reference Frame [Ref. 3] 11
Figure 4. Image Plane Reference Frame [Ref. 3] 12
Figure 5. Geometry of the Three Point Pose Estimation Problem [Ref. 1] 13
Figure 6. Intersection of 3 Elliptic Cylinders to Yield 8 Solutions [Ref. 1] 17
Figure 7. Unfiltered 'picture25.bmp' 23
Figure 8. Pixel Luminance Contour of Three Spots of Interest and Surroundings 24
Figure 9. "Hotspot" Pixel Groupings and Center Locations 29
Figure 10. Representative Polynomial Fit to Pixel Luminance Data (Unfiltered) 30
Figure 11. Composite Polynomial Fit-Difference Plot 31
Figure 12. Weibull Row Filter 33
Figure 13. Normal Gaussian Column Filter 34
Figure 14. Composite Image Filter 35
Figure 15. Filtered 'picture25.bmp' 36
Figure 16. Representative Polynomial Fit to Pixel Luminance Data (Filtered) 37
Figure 17. Pixel Intensities vs. Column Position, Polynomial Difference Method 38
Figure 18. Sliding Average Method Performance 44
Figure 19. Polynomial Difference Method Performance 45
Figure 20. Bisection Thresholding Method Performance 47
Figure 21. Time Required to Process Each Image in Landing Approach Video Clip 48
Figure 22. Representative Processed Image with Brightest Spots Indicated 55
Figure 23. Representative Image with Five Brightest Spots Indicated 56
Figure 24. Representative Image with the Three Spots of Interest Indicated 57
Figure 25. Search Box Expansion for Representative Video Clip 60
Figure 26. Search Box Size for Representative Video Clip 61
Figure 27. Final Threshold at Which Three Points Isolated 64
Figure 28. US Army FOG-R Unmanned Air Vehicle, Side View 69
Figure 29. Pixel Height/Width vs. Range from Target 71
Figure 30. IR Camera and VTR Installation in FOG-R UAV 73
Figure 31. DGPS Installation in FOG-R UAV 74
Figure 32. Spot Position and Processing Box Borders For Representative Approach 78
Figure 33. Comparison of IR and DGPS Position in Local Tangent Plane (2-D) 79
Figure 34. Comparison of IR and DGPS Position in Local Tangent Plane (3-D) 80
Figure 35. RealSim Graphical User Interface [Ref. 18] 89
Figure 36. AC-104 Front Panel Arrangement 90

IX

THIS PAGE INTENTIONALLY LEFT BLANK

ACKNOWLEDGEMENT

I would like to thank Professors Isaac Kaminer and Oleg Yakimenko for their

patient guidance and thoughtful insight throughout this effort. I would also like to thank

Professor Edward Wu for his interest in and cogent analysis of the image filtering portion

of this project. Additionally, I am also grateful for the technical advice and consultation

provided by Mr. Jerry Lentz and Mr. Don Meeks, without whom the flight test would not

have been possible.

Finally, I would like to thank my wife, Therese, and my children, John and

Elizabeth, for their unlimited patience, understanding, and encouragement.

XI

THIS PAGE INTENTIONALLY LEFT BLANK

Xll

I. INTRODUCTION

A. VISION-BASED NAVIGATION

The role of Unmanned Aerial Vehicles (UAV) for modem military operations is

expected to expand in the 21st Century, including increased deployment of UAVs from

Navy ships at sea. Currently, UAVs are guided by remote control, or they fly a pre-

programmed route. Neither case is entirely compatible with operations at sea.

Dependence on remote control limits the range at which the UAV can be operated from

the controlling platform. A pre-programmed route of flight can be utilized for UAV

operations from a fixed takeoff and recovery site but is not compatible with landing on a

moving ship at sea if the ships position at landing is undetermined when the UAV is

programmed with the route of flight. To facilitate ship-based UAV launch and recovery

operations without restricting the ship's freedom to maneuver during the UAV mission,

the UAV must be able to determine within acceptable error limits its position, velocity,

and attitude relative to the ship on which it will land. Data link systems that provide such

relative position information have been employed on Navy ships for operations with

manned aircraft. However, these systems require additional transmit and receive

equipment to be installed on the ship and the aircraft. The cost, weight, volume, and

susceptibility to electronic warfare of these shipboard systems makes it desirable for the

aircraft to rely only on passive sensors installed on the aircraft for landing. While DGPS

and inertial measuring sensors can provide accurate vehicle position, velocity, and

attitude estimates, they are incapable of determining position, velocity, and attitude

estimates relative to a moving landing platform. A vision sensor, mounted on the aircraft

in such a manner that the moving ship remains within the sensor field of view while the

aircraft is landing can provide such information. Being able to land autonomously on a

moving ship passively without reliance on specialized systems installed on the ship

removes a significant limitation to the flexibility of maritime UAV operations.

Detection of a ship on the sea surface using vision sensors requires that the ship

display visible features that contrast with its surroundings. Visible light cameras are

capable of locating a ship on the sea surface at great ranges in ideal, daylight conditions,

but they are severely limited at night and in poor weather. Infrared (IR) radiation in the

8-12 micron range can be detected by IR cameras regardless of ambient light, and all

ships generally radiate strongly in these wavelengths due to their engine and smokestack.

These "hot" features typically contrast well with the "cool" water surrounding the ship

due to this significant temperature difference. At the sensitivity limit of a given IR

sensor, a ship's IR signature will most likely appear as a single point. As the range

between the sensor and the ship is reduced, multiple hot points can typically be resolved.

If the actual distances between these points on the ship are known, then the relative

location of these hot points with respect to each other in the image produced by the IR

sensor can be used to determine the camera's range and orientation relative to the ship.

However, vision-based sensors are sensitive to occlusions and times when the points of

interest are not in the sensor field of view, referred to here as out-of-frame events. When

combined with the navigation data provided by DGPS and inertial sensors, these vision-

based position estimates complete the navigation solution required for a UAV to perform

an autonomous shipboard landing using only passive sensors. [Ref. 1]

B. PURPOSE

The primary purpose of this thesis is to demonstrate how an aircraft's position,

relative to a moving ship can be estimated to support navigation, guidance, and control

for autonomous shipboard landing using only data available from a video sensor mounted

in the aircraft's nose. The development and implementation of original image processing

algorithms that extract relevant reference data from video imagery are presented. A new

navigation algorithm that estimates aircraft position, velocity, and attitude based on three

known visual reference points is discussed. Integration of the original image processing

algorithms with the navigation algorithm is presented. The integrated algorithms are

used to produce position estimates from video imagery obtained during actual flight test,

and comparison of the vision-based estimates with a Differential Global Positioning

System (DGPS) navigation solution is presented.

THIS PAGE INTENTIONALLY LEFT BLANK

II. NAVIGATION USING PASSIVE SENSORS

A. POSITION AND VELOCITY ESTIMATION

The task of automatically landing an aircraft on a pitching ship at sea requires

exceptional positioning accuracy in three dimensions that is updated rapidly [Ref. 2].

The available passive sensor suite for modern aircraft includes the Inertial Navigation

System (INS), the Global Positioning System (GPS), air data systems, and vision-based

sensors [Ref. 1]. Each of these systems individually provides either a high update rate or

accurate position and velocity estimates, but no single one provides the highly precise,

rapidly updated position estimates that are required to support the autonomous landing of

an aircraft on a moving ship at sea [Ref. 2]. By using the techniques of optimal

estimation, the strengths of each individual sensor can be blended to produce optimal

estimates of position and velocity that are valid over a large frequency range [Ref. 1].

1. Inertial Navigation System (INS)

Probably the most popular long-range navigation system in use is the INS. In the

strapdown configuration, this system measures thrust accelerations and angular velocities

in the body reference frame and integrates them to estimate velocity and position, and it

also determines aircraft attitude. It is entirely self-contained on the aircraft that carries it.

While INS position estimates can be updated several times each second, INS systems are

subject to numerous bias and drift errors that cause their accuracy to degrade over time.

As a result, its accuracy is insufficient for use as a stand-alone navigation sensor for

autonomous shipboard landing. [Ref. 2]

2. Global Positioning System (GPS)

The Global Positioning System is a satellite-based radio navigation system with

the capability to provide locating data to an unlimited number of users. Most GPS

receivers currently available on the market compute precise vehicle position, velocity,

and altitude estimates, but GPS is not immune from errors either. Errors that affect the

GPS include: atmospheric delays, Selective Availability, clock differences, ephemeris

error, multipath, receiver noise, and Dilution of Precision [Ref. 2]. GPS can still be made

more accurate by augmenting it with a differential correction provided by either an

additional GPS receiver whose exact position is known or via a commercially available

satellite service. Even so, its update rate is significantly less than that of the E^TS, so it

too is insufficient as a stand-alone navigation sensor for autonomous shipboard landing.

[Ref. 2]

3. Air Data Systems

Air data systems typically consist of a pitot-static system that senses ambient

static pressure, total pressure, and outside air temperature. These values are used by an

air data computer to estimate aircraft airspeed, altitude, and vertical velocity. Depending

on how the pitot-static plumbing is installed, these systems can have a tendency to lag,

and there is no way to extract aircraft position from an air data system alone. Clearly, air

data systems are also insufficient as a stand-alone navigation sensor for autonomous

shipboard landing.

4. Vision-based Sensors

Vision sensors rely on data gleaned from imagery to perform navigation

functions. Their greatest contribution to solving the autonomous shipboard landing

problem is that they can be used to estimate the aircraft's position relative to the ship

based on how the ship appears in the imagery. This is a contribution that none of the

previously mentioned sensor systems is capable of, yet it is key to landing on a moving

platform. Unfortunately, vision sensors are sensitive to occlusions and occasions when

one of the visibly significant reference points is not present in the image frame, hereafter

referred to as an out-of-frame event. [Ref. 1]

B. COORDINATE SYSTEMS

The use of vision sensors for aircraft navigation requires the use of several

different coordinate systems, including Earth Centered Earth Fixed (ECEF), geodetic,

Local Tangent Plane (LTP), Body Reference, Image Plane (M), and Camera Reference,

and transformations between them. [Ref. 2]

The geodetic and LTP systems depend on the model of the earth's surface. The

current standard is the WGS-84 ellipsoid, which is generated by rotating an ellipse with a

semi-major axis of 6378137.0 meters and semi-minor axis of 6356752.3 meters about its

minor axis. The true north and south poles are the endpoints of the ellipsoid's minor axis.

[Ref. 2]

1. Geodetic Coordinate System

The output of navigation systems used on modern aircraft is generally resolved in

the geodetic coordinate system, i.e., the output is in terms of latitude, longitude, and

altitude. In the geodetic coordinate system the elevation angle or latitude, A, is the angle

between the ellipsoidal normal and its projection in the equatorial plane. The longitude,

0, is the angle in the equatorial plane from the prime meridian (0° longitude) to the given

point. The altitude or geodetic height, h, is the distance along the ellipsoid normal from

the surface of the earth to the given point.

2. Earth Centered Earth Fixed

The Earth Centered Earth Fixed (ECEF) system is a right-hand Cartesian system

with its origin at the center of the earth. The positive x-axis passes from the origin

through the intersection of the equator (0° latitude) and the prime meridian (0°

longitude). The positive Y-axis passes from the origin through 90° E longitude, and the

positive Z-axis passes from the origin through the true north pole. The ECEF system

rotates with the earth, but it is independent of the mathematical model of the earth's

surface. The ECEF system is presented in figure 1. [Ref. 2]

3. Local Tangent Plane

The local tangent plane (LTP) or local geodetic system is defined by a plane that

is tangent to the earth's surface; the point of tangency is the origin of the system. The

positive x-axis is in the plane and points to true north; the positive y-axis is in the plane

and points to true east. The z-axis is perpendicular to the plane and passes through the

origin. For the purposes of this investigation, the positive z-axis points toward the center

of the earth, resulting in a right-hand Cartesian system that is also referred to as North-

East-Down (NED) and is consistent with the body reference frame. Typically, pure

inertial systems navigate in a local tangent plane coordinate system before öutputting

position in geodetic coordinates. This frame is also referred to as the universal frame.

The local tangent plane coordinate system is presented in figure 1. [Ref. 3]

Z.

Greenwich
meridian

• Tangent
plane

Equator

Figure 1. ECEF and Local Tangent Plane Coordinate System [Ref. 3]

4. Body Reference Frame

The aircraft body reference frame is a right hand orthogonal coordinate system

with the origin at the aircraft's center of gravity. The x-axis points forward along the

aircraft's longitudinal axis. The y-axis points laterally toward the right wing tip, and the

z-axis points downward, normal to the x-y plane. The transformation matrix for

converting vectors (either position or velocity vectors) from universal (inertial) to body

coordinate systems (* R) is:

'* =

cos^cos# sin^cos# -sin#

cos^sin#sin0-sin^cos0 sin6sin<j)siny/ + cosy/cos(j) cos#sin0

cos ^ sin 6? cos 0 +sin ^ sin 0 sin 6 cos <p sin ^- cos yr sin 0 cos 0 cos 0

and the transformation from body to universal coordinates is just the inverse:

Cp_8p-1

where (/>, 9, and ^ are the Euler angles in roll, pitch, and yaw, respectively. The body

reference frame is illustrated in figure 2. [Ref. 4]

+4i = Roll Angle ($=p)
+L = Roll Moment

+v = Lateral
Vel.

+Y = Side s?
Force v^/ +6 = Pitch Angle {Q=q]

+H = Pitch Moment

+u = Forward
Vel.

+X = Axial
Force

^>- AN, < 0

+w = VerticalsL
Vel. V

+2 - Normal
Force

AM, < 0

o
+t * Yaw Angle (j«r)
+N * Yaw Moment

Figure 2. Aircraft Body Reference Frame [Ref. 4]

10

5. Camera Reference Frame

The camera reference frame is a Cartesian coordinate system with its origin

located at the focal point of the camera, as shown in figure 3.

Figure 3. Camera Reference Frame [Ref. 3]

The x-axis points forward along the optical axis of the camera, and the y-axis is positive

to the right (into the page as drawn). The z-axis is positive down, normal to the camera

x-y plane. With the camera mounted on the aircraft, the conversion from the body

reference frame to the camera reference frame would follow the same rotation sequence

and, thus, use the same rotation matrix as described in the previous section. If the camera

is mounted in the aircraft coincident with the aircraft body axes, then all of the Euler

angles are zero, the rotation matrix is the identity matrix, and the camera reference frame

equals the aircraft body axis reference frame. [Ref. 3]

11

6. Image Plane Reference Frame

A pinhole camera model can be used to map three-dimensional camera reference

frame coordinates to two-dimensional image plane reference frame coordinates. Denote

the position vector of a point, P, in the camera field of view in camera reference frame

coordinates as CPPC =[x,y,zf ■ Let / be the focal length of the camera, and let

[u,vf denote the projection of CPPC onto the image plane. Then

x
The image plane reference frame is illustrated in figure 4. [Ref. 3]

Figure 4. Image Plane Reference Frame [Ref. 3]

12

III. THREE POINT POSE ESTIMATION PROBLEM

A. PROBLEM FORMULATION

Given the perspective projection of three points constituting the vertices of a

known triangle in three dimensional space, it is possible to determine the position of each

of the vertices. Image formation in photography and human vision takes place by means

of straight rays from the points of the viewed object passing through a common point and

being captured by light sensitive material. This common point is called the perspective

center and corresponds to the lens in the camera and eye [Ref. 6].

The problem was first formulated in 1841 by German mathematician Grunert, and

can be set up in the following way, as described below and illustrated in figure 5. [Ref.

5]

Q1 "
/ / /

^03

,Q2 r\\

-X"- - - -
Image plane

Pi
P2

P3

Figure 5. Geometry of the Three Point Pose Estimation Problem [Ref. 1]

Let the unknown positions of the three points of the known triangle be Pi, P2, and P3, and

take the origin of the camera coordinate frame, O, to be the center of perspectivity. The

13

image projection plane is taken to be distance / in front of O. Define the vectors

Pi = {*,->y«>z,-}> i = 1,2,3 as the vectors connecting O to the three know points, P„

i = 1,2,3. Let the known side lengths of the triangle be defined as:

di=\p2-h*°
where dl*dz± d3

Let the observed perspective projection of Pi, P2, and P3 be Qi, Q2, and Q3, respectively.

The projection of each point on to the image plane has the following form:

Q,=
U:

KV>J

f_
x,. KZ<J

(2)

The points O, Pi, P2, and P3 form a tetrahedron. Let the angles at O opposite the sides

PjP2, PJPJ , and P2P3 be given by or,, a2, and a3, respectively. Finally, let the unknown

distances of the points Pj, P2, and P3 from O be defined as

*. =|p.|,f = 1,2,3. (3)

To determine the position of the three points with respect to the camera reference frame,

it is sufficient to determine Si, s2, and s3 since /?,. = stjt, i -1,2,3 where jt represents the

unit vector between O and P,. [Refs 1 and 5]

B. GRUNERT'S SOLUTION

Using the problem formulation stated above, Grunert proceeded in the following

way [Ref. 5]. Using the law of cosines, we get

14

sf + s2 - 2sxs2 cos ax = d2 (4)

s2 +s; - 2sxs3 cosa2 = d2 (5)

s2 +sl- 2s 2s, cos or, = d\ (6)

Let s, = us, and s, = vsx for some « and v. Then,

d* _ d\ _ dj
1 l + u2 -2ucosax l + v2-2vcosa2 u

2 +v2 -2uvcosa3

(7)

from which

u2+ 2 3 v2-2uvcosQr3 +—|-vcosa2—\ = 0 (8)
^2 rf2 d2

Ji2-2 • ^<iLCosß-2ucosax
2+^^->

d2 H di,
u2 -^v2 +2v^cosß-2ucosax

2 + 2 2 ' =0 (9)

From (8)

w2 =— , v +2Mvcosor3 j-vcos,a2 +—y (10)

Substituting (10) into (9) yields an expression for u in terms of v. This expression for w is

then substituted into (8) to obtain a fourth order polynomial in v.

A4v
4+A3v

3+A2v
2+A,v1+A0=0 (11)

This fourth order polynomial equation can have as many as four real roots. [Ref. 5]

Since Grunert first formulated his solution, this problem has been addressed by

many mathematicians and scientists throughout the world. Haralick presents and

compares several of the solutions at length [Ref. 5]. However, Yakimenko and Kaminer

contend that none of the published solutions attempt to determine the number of

15

geometrically feasible solutions, nor do they show how to obtain at least one of them

reliably [Ref. 1].

C. NUMERICAL THREE-POINT ALGORITHM

1. Problem Formulation

Yakimenko and Kaminer build on Grunert's problem formulation by combining

(1) and (2) to obtain nine equations in nine unknowns, {*,,)>,,<:,}, i = 1,2,3. Defining

a^af'1, the following comes from (2):

y, =xiül, z, =x,v, (12)

Substituting these expressions into (1), (1) and (2) are reduced to the following set of

three non-linear equations in three unknowns:

(l + u2 + v 2)bc2 - 2(l + «,«2 + vjv2)xlx2 + (l + ü2 + v 2)x2
2 = d2

(l + ü2 + v,2)bc2 - 2(l + w, w3 + v,v3)x1x3 + (l + M32 + V32)x2 = d\ (13)

(l + ÜI + v2)x2
2 - 2(1 + ü2ü3 + v2v3)x,x3 + (l + M32 + V32)x2

3 = d\

To simplify notation, (13) is rewritten as

e2 - 2Dnxxx2 + Bx\
.2 -in „„ , r^JL

Ax1 - 2Dnxxx2 + Bx2 = d1

Ax1 - 2D]3;c1;t3 + Cx1 = d2 (14)

Bxl - ID^Xfo + Cx2 = d3

Note that A, B,C,dt are strictly positive by construction. The solution of (14), shown in

figure 6, is an intersection of three elliptic cylinders, whose axes of symmetry are given

by xt,where i = 1, 2, 3.

16

-200

150 >

100 ^

50 ~

0~

-50 ~

100^

150. _.,-■'"'

■200

200 200

Figure 6. Intersection of 3 Elliptic Cylinders to Yield 8 Solutions [Ref. 1]

While the intersection of three elliptic cylinders may yield as many as eight solutions,

Yakimenko and Kaminer show that the number of sets of admissible solutions is reduced

to four if it is assumed that the camera is always in front of the landing area. By using

the first two equations in (14), the following expressions for x2 and x3 are produced:

x2 = (D12JC, ± V(ß12*,)2 - (Ax? -dx)B)B~l

x3 = {Dnx, ±^{Dl3xJ "(A*,2 -d2)c)C^ (15)

The set of possible admissible solutions xx lies in the interval

0 < xl < min' ' iin<-
d,B d,C

[AB-D{2 AC-D{3
(16)

17

By taking all possible combinations for x2 and x3 and substituting them into the third

equation of (14), four equations in JCjare obtained. Denote them as A++, A_+, A+_, and

A__. By setting each of these expressions to zero,

A++U1) = 0, A_+U1) = 0, A+_(*,) = 0, A__(x,) = 0 (17)

admissible solutions for A:, are obtained. Furthermore, they demonstrate through

simulation using realistic values for dvd2,d3 that two solution sets are produced, at least

one of which is admissible. [Ref. 1]

Because the set of equations (14) may have two admissible solutions, a test to

reliably determine the correct one is required. Yakimenko and Kaminer propose to use

normals to resolve the ambiguity by constructing a set of three vectors for each solution

and determining the respective normals to each of the planes defined by the vector sets.

The normals are then used to identify the correct solution. [Ref. 1]

2. Numerical Algorithm

Based on the results presented in the previous section, Yakimenko and Kaminer

propose the following algorithm for solving the three point problem. Suppose a good

initial guess of |,(0) ={x„yi,zi}, i = U is available. Compute the normal to the plane

generated by p,-0), i = 1,3:

-«ft (Pi Pi ->X<-Pi Pi > (18)
** ä *\ ... till ä __ ä ,„, * ^

Pi Pi \\\\Pi Pi

18

Then, for step k:

1) solve numerically equations (17) for x1
(*) in the interval (16), using x^ as

an initial guess;

2) substitute each solutionx\> obtained in 1) into (12) to get p)_\ and p)_2;

3) compute normals

rplk\-Hk\)x(plk_\-p^)
Pi i n.i

= (*) _=(*)
Pi-i Pi-i

and nf =
CP^-PZ^CP^-P^)

= (*) _=<*)
fl_2 K2_2 DW -5(i)

"l_2 Pl_2

4) choose set p)*;, z = l,3 or p\\, f = 1,3 that maximizes the dot product

(ü,*»,n(W)).

Once the correct solution is obtained, the orientation of the camera frame with

respect to the plane formed by three points of the ship can be calculated as follows. Let

{3pJ denote an orthogonal coordinate system attached to the plane generated by three

points; let {c} denote the coordinate system attached to the camera; and let 3p
f/? be the

coordinate transformation from {3p} to fcj. Form three orthogonal vectors r,, r2, r3

A Ä /v

using the correct solution px, p2, p3 as follows:

= _(Pl-Pi) - _(Pl-Pi)x(P3-Pl) r -vp
M - ~ 7. > r3 — ;; ~ H ~ : > r2 ~ r3 * 'i

P2 "Pi P2-Pl P3-Pl

(19)

Then 3pi? = [rI F2 r3]. The transformation matrix 3p
f7? can also be expressed using

Euler angles. From this, yaw, pitch and bank angles can be found in the following

manner:

19

y3p = tan"1 ^,63p= -sin"1 rI3, d>lp = tan"1 ^L. (20)

Now, the attitude of {c} with respect to a coordinate system {sj attached to the ship can

be found using (12) from the transformation matrix 3p
fi?3^?, where ip

sR can be obtained

from the known positions of the three points on the ship in fsj. [Ref. 1]

20

IV. IMAGE PROCESSING

A. PURPOSE

The intent of the image processing portion of this investigation is to establish a

methodology for locating three spots of interest in a sequence of successive still images

that comprise a video clip, live or recorded. These three spots represent three visibly

significant points that could be seen on a moving ship at sea serving as a landing platform

foraUAV.

B. METHODOLGY

A digital image is comprised of multiple rows of picture elements, commonly

referred to as pixels. A pixel is the smallest addressable point of a bitmapped screen that

can be independently assigned color and intensity. A bitmap is a digital representation of

a picture in which all the pixels comprising the picture are rendered in a rectangular grid

and correspond to specifically assigned bits in computer memory [Ref. 7]. This

rectangular organization of ordered, real-valued image data makes a digital image ideally

suited for representation using an array. Monochrome images can be stored in two-

dimensional arrays in which each element in the array corresponds to a single pixel

intensity, or luminance, in the displayed image. Color images can be stored in three-

dimensional arrays, where each plane in the third dimension represents the pixel

intensities for one of the three primary colors: red, green, and blue [Ref. 8]. This

investigation is concerned primarily with monochrome images, presumably created by an

infrared (IR) sensor.

21

In a digital image pixels are indexed sequentially in rows from top to bottom and

in columns from left to right, which is consistent with standard mathematical notation for

indexing two-dimensional arrays, or matrices. The location of each pixel in the image

can be described by a vector, p, from the origin at the upper left hand corner of the image

to the pixel, represented by row and column position coordinates i and;', respectively, in a

rectangular coordinate system, such that p = ii + jj. The row and column indices of the

image array correspond directly to the magnitudes of the component vectors of p.

Pixel resolution, the number of pixels per unit length of image, is typically such

that features of interest within the image are usually comprised of multiple pixels. Of

interest in this investigation is the location of three distinct groups of pixels that

correspond to known physical features represented by the image. For the purpose of this

investigation, a spot is defined as a group of pixels whose luminance significantly

exceeds that of their surroundings and that are located within a specified vertical and

horizontal difference between successive pixels, 8j and 8j, respectively.

Determination of the image plane coordinates of the centers of three spots without

a priori characterization of their nature proved difficult in the first image of the sequence.

Several methods, each with its own limitations, were developed and are described below.

In each case, some a priori characterization of the three spots is required. A representative

image is presented in figure 7.

22

r m.

* Hi

Figure 7. Unfiltered 'picture25.bmp'

1. Bisection Thresholding

On a contour plot of the image where the contours represent varying pixel

luminance, the three spots of interest appear as three-dimensional spikes, as in figure 8.

23

picture25.bmp

Pixel Row Pixel Column

Figure 8. Pixel Luminance Contour of Three Spots of Interest and Surroundings

One method of isolating the three spots of interest from their immediate

surroundings is to apply a threshold to the image, above which only the pixels whose

luminance exceeds the threshold are discernable. This effectively results in slicing off the

tops of the peaks of the contour plots. Assuming that the luminances of each of the spots

of interest exceed the luminance of their surroundings, a threshold can be chosen such

that only pixels that comprise the spots of interest exceed the threshold. Once the

appropriate threshold level is chosen, the pixels that exceed the threshold are assigned to

spots based on their relative position, and the center of each of the spots is computed

using a weighted average.

24

Because of numerous dynamic factors during the landing approach, the luminance

of the three spots of interest relative to their surroundings changes continuously with each

successive frame during the approach. These factors include decreasing range from the

camera (aircraft) to the spots (and, therefore, changing amounts of atmospheric

absorption of the energy from the spots) and continuous change of the camera gain via its

automatic gain control (AGC). As a result, the luminance threshold used to isolate the

spot pixels from the surrounding pixels must be determined dynamically with each image

frame that is processed.

a. Bisection Thresholding

The correct threshold is determined using an algorithm that adjusts the

luminance threshold by iteratively bisecting the available range of pixel luminance until

exactly the desired number of spots is extracted. Following each threshold adjustment,

the image is evaluated to determine how many spots are contained above the threshold

level. Additionally, the available range of pixel luminance is revised based on the actual

number of spots extracted at a given threshold level prior to the next iteration, as

described in the algorithm below.

Tu = upper threshold limit
TL = lower threshold limit
Tc = (Tu + TL)/2 + TL {current threshold}
N = desired number of spots

evaluate number of spots in image @ Tc
while the number of spots * N

if number of spots < N
set Tu = Tc
recompute Tc with new Tu and same TL

if number of spots > N

25

set TL = Tc
recompute Tc with new TL and same Tu

evaluate number of spots in image @ new Tc
return to while condition

For example, pixel luminance for each image ranges from 0 to 1. Based

on a characterization of data from numerous approaches, the spots are indiscernible from

their surroundings if the pixel luminance of the three spots of interest is less than 0.4.

Therefore, assign 0.4 as the initial lower limit of the threshold range. The upper limit of

the range is initially 1. For the first image, the algorithm sets the threshold at the center

of the available range, in this case, 0.7. If more than three spots were extracted at this

threshold, the lower threshold limit would be set to the current threshold (0.7), and the

upper limit would remain unchanged. A new threshold (0.85) is computed such that it

bisects the new threshold range (0.7 to 1). If fewer than three spots were extracted at the

first threshold, the upper threshold limit would be set to the current threshold (0.7), and

the lower limit would remain unchanged. A new threshold (0.55) would be computed

such that it bisected the new threshold range (0.4 to 0.7). This process is iterated until

exactly three spots are extracted from the image.

b. Spot assignment and counting

For each threshold level evaluated, the number of spots associated with

that threshold level must be determined. However, when the threshold is applied to the

image, or a portion thereof, the resulting data set consists of the coordinates of the

individual pixels whose luminance exceeds the threshold. Thus, to determine the number

26

of spots, the pixels must be grouped accordingly into their associated spots so they can be

counted.

The coordinates of all the pixels whose luminance exceed the threshold

are sorted in ascending row order and placed in an array hereafter referred to as the pixel

array, P. The first pixel in the pixel array is moved to a new array to establish a new spot

and is assigned as the basis for comparison with the other pixels in P. If the next pixel in

P meets the criteria to be considered in the same spot as the first pixel, it is removed from

P, appended to the spot array, and is assigned as the new basis for comparison with the

next pixel in P. If it is not considered to be part of the same spot as the first pixel from P,

then it is placed in a separate array for all pixels that are not in the current spot and the

first pixel remains the basis for comparison with the next pixel in P. This process is

repeated until all of the pixels in the pixel array have been evaluated and assigned to a

spot. An algorithm that determines the number of spots at the chosen threshold operates

on the pixel array and assigns each of the pixels to one of the spots, as described below.

P = pixel array, made up of individual pixel coordinate pairs, p
Sc = array of coordinates of pixels comprising current spot
SH = array of coordinates of pixels not comprising current spot
pb = pixel used as basis for comparison with remaining pixels in P

while P * []
copy first pixel from P to Sc to establish new spot
assign the first pixel from P as pb
for k = 2 to number of pixels in P

if KlPki - Pul < Si) & (|pkj - Pbj| < 5j)}
append pk to Sc
let pb = pk

else
append pk to SH
Pb remains same

27

return to for condition
copy Sc elsewhere for later use
letSc = []
let P = SH

return to while condition

At the completion of the algorithm, each of the Sc arrays generated

contains the pixel data for one of the spots, and the number of Sc arrays generated equals

the number of spots.

c. Spot center computation

The center of a spot, pc, composed of n pixels, p, is determined by

weighting the position of each pixel by its luminance, I, as represented by the following

equation.

1 n n

PC=TS
/

PPP
;
 where L = ^/9

^ p=l <?=1

In figure 9 below, the pixels that exceed the threshold comprise the spots

and are shown as collections of dots. Each of these three groups of pixels is considered

one spot. The crosses represent the computed center of the associated spot.

28

Hotspot Centroid Location, File: picture25.bmp Threshold: 0.8375

40

45

.50

a:
«5 ><
a.

55-

60

65-

j i i i i i

 ! 1 ! i

i i r

1
• > threshold
+ centroid

; V ;

 : "+| 1 ~

i i i

195 200 205 210 215 220 225
Pixel Column Q)

230 235 240

Figure 9. "Hotspot" Pixel Groupings and Center Locations

2. Polynomial-Difference

Another viable method for determining the image plane coordinates of the three

spots involved analyzing the rows and columns in the image array using an algorithm

described below.

For each row in the pixel luminance array, a second-order polynomial was fit to

the pixel luminance data in a least squares sense. A representative plot of luminance data

and its associated polynomial curve fit are presented below in figure 10 for a row that

includes one of the three spots of interest. The normalized luminance for each pixel are

shown as diamonds, and the solid line represents the second-order polynomial fit.

29

Row: 42, Fit order: 2

100 200 300 400
Pixel Column

500 600

Figure 10. Representative Polynomial Fit to Pixel Luminance Data (Unfiltered)

In this case, the column position of the point of interest is 204, but it is difficult to

discern by computing the difference between the actual luminance and the polynomial

curve fit value for that column. It was assumed that the column at which the maximum

difference between the actual luminance and the second-order polynomial fit occurred

would correspond to the column position of one of the pixels that comprised one of the

spots of interest. However, as can be seen in figure 10, this assumption does not hold

when this polynomial fit-difference method is applied to an unfiltered image. A

composite plot of all the computed difference values from the row-wise and column-wise

calculations is presented in figure 11. In the image for which these data are computed,

30

the spots of interest are located at column positions 204, 233, and 235. It is clear from

this figure that the data at column position 204 is overshadowed by data at several other

locations in the image that do not correspond to the three spots of interest.

1r
Composite Polynomial Fit-Difference (picture25.bmp)

0.9

0.8

0.7

.0.6

100 200 300 400
Pixel Column

500 600

Figure 11. Composite Polynomial Fit-Difference Plot

In order to apply this method with certainty so that the three spots of interest would be

found, additional information regarding the nature of the image is required.

Given that the field of view of the camera is centered on and fixed in the plane

defined by the aircraft's x and z body axes, it is assumed that the three spots of interest

first appear in the image frame as the aircraft completes its left-hand approach turn and is

close to being lined up on the runway as it begins its landing approach. This places the

31

runway to the left of the center of the image frame, extending from top to bottom.

Furthermore, the camera is depressed approximately 5 degrees from horizontal. Based on

these assumptions, it is most likely that the three spots of interest will appear near the top

of the image frame, slightly left of center. In fact, the likelihood of the vertical position

of the three spots of interest is considered to follow a Weibull distribution, while the

likelihood of the horizontal position is considered to follow a Normal Gaussian

distribution. Empirical data are combined with these conclusions to create a composite

filter as described below.

To apply the polynomial-difference method effectively, it is necessary to filter the

image array in such a manner that the three spots of interest can be discerned from their

local surroundings yet other pixels in the image that are not of interest but of equal or

greater luminance are effectively ignored. As discussed above, the likelihood of the

vertical position of the three spots of interest is considered to follow a Weibull

distribution as described by the following relation.

U a i

X = 1.8

aw = 60

x,=[l..r]
r =number of rows in the image array

The resulting row filter is presented in figure 12.

32

Row Filter: Weibull Weighting, o = 60, X = 1.8

0.9

0.8-

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

n

l :

-V

50 100 150 200 250
Pixel Row (i)

300 350 400 450

Figure 12. Weibull Row Filter

Likewise, the likelihood of the horizontal position is considered to follow a

Normal Gaussian distribution as described by the following relation.

fN(Xj-,ß,aN) =
1

if Xj-M

<7N«J27I

2 o-v

^ = 220
0-^=30

x,.=[l..c]
c = number of columns in the image array

The resulting column filter is presented in figure 13.

33

Column Filter: Gaussian Weighting, a = 30 ji = 220

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

I

/ \

! I 1 i

I
\ ' i

 I ! i ! : i
I
I i I

.! L

/
I

t

! I
/

/ \

! /
/

| \ \ \

J i

\'T !

i i

100 200 300 400
Pixel Column (j)

500 600

Figure 13. Normal Gaussian Column Filter

The filtered image, IF, is produced by premultiplying, in a matrix sense, the image

array, I, by the row filter, R, and postmultiplying by the column filter, C, as described in

the following relation.

IF=RIC

where R and C are diagonal matrices as defined below:

(f
diag

^Y
R =

C = diag

max (O JJ

max (U

34

The resulting composite image filter is graphically depicted in figure 14.

Composite Filter

•u 1
0.8 v ' . '■ ' h

c>0.6-
c
2 c»
|0.4_

,..;■■•■"" Mlil^llifll
0.2 v

o>
0

100^^^ ^^^ ""600
200^^^ W^^^^^ 500

^^P^^ 400 300^^^B W 300
400 ^^^^^100

•200

Pixel Row (i) 0
Pixel Column (j)

Figure 14. Composite Image Filter

The effects of applying the filter to the first image in the sequence to be processed

can be seen in figure 15.

35

Figure 15. Filtered 'picture25.bmp'

The polynomial difference method can be effectively applied to the filtered image

array to extract the desired horizontal and vertical position information of the three spots

of interest. A representative polynomial fit to filtered data is provided in figure 16, which

clearly shows the maximum difference between the data and the fit to occur at column

204, the location of the point of interest.

36

Row: 42, Fit order: 2

0.9

+ actual data
-— curve fit

100 200 300
Pixel Column

400 500 600

Figure 16. Representative Polynomial Fit to Pixel Luminance Data (Filtered)

This computation is repeated for each row in the image array. Since exactly one

maximum difference value is determined for each row, this computation is also repeated

column-wise for each column in the array to mitigate the instance when one row

contained pixels for more than one of the spots of interest. As a result, a total of 1120

pixels are identified. A composite plot of pixel intensities versus pixel column position

for all of the 1120 identified pixels is presented in figure 17. Note the three tallest groups

of intensities correspond to the three spots of interest.

37

Composite Polynomial Fit-Difference (picture25.bmp)

0.9

300
Pixel Column

Figure 17. Pixel Intensities vs. Column Position, Polynomial Difference Method

3. Sliding Average

A third method relies only on the assumptions that the three spots of interest are

among those in the image that appear significantly brighter than their immediate

surroundings and that the distance between them is small relative to the size of the image

to be processed. This method is effective for locating the three spots of interest in the

first image of the sequence to be processed.

This method preprocesses the image array by computing the mean luminance

value for each row of pixels in the image. In each row, the row mean luminance value is

then subtracted from each individual pixel luminance value. The luminance value of

38

each pixel whose luminance value is below the row mean is set to zero. A standard

sliding average procedure is applied to each row of the image. The width of the

averaging window is determined empirically to satisfy the requirements of the

application. Any pixels whose luminance values are greater than ten standard deviations

above the mean are identified; all others are set to zero.

The next step in this approach is to determine which of the remaining non-zero

pixel are adjacent, and therefore, comprise a single spot and which ones represent

different spots. This is accomplished by locating the brightest remaining pixel and

setting all of the pixels within specified horizontal and vertical distances of it to zero. The

magnitudes of these horizontal and vertical distances are also a function of the

application. This procedure is iteratively applied to the group of remaining non-zero

pixels until all of the non-zero pixels have either been marked as a spot center or zeroed

because of their proximity to another bright pixel.

Once all of the bright spots in the image have been located, geometry of the spots

of interest is used to determine which of the bright spots are the three spots of interest. In

this application of this method, it is reliably assumed, based on a characterization of the

images to be processed, that the three spots of interest will be closer to each other than

any other bright spots identified in the image, especially at the ranges that are typical for

initial visual acquisition of the landing area. As such, the distances between all of the

bright spots in the image are computed, and are summed three at a time. The

combination of distances that yields the smallest sum identifies the three points of

interest.

39

C. COMPARISON OF METHODS

Because information gained from processing one image can be used to simplify

the processing of the successive image in a sequence of still images that comprise a video

representation of an aircraft approach to landing, the task of determining the image plane

coordinates of the three spots of interest in each image can be divided into two portions:

1) determining the coordinates in the first image of the sequence, and, 2) determining the

coordinates in each of the remaining images. Each of the methods discussed above is

differently suited to both of these tasks.

1. Initial Coordinate Determination

Based on analysis of numerous images from the beginning of several landing

approach video clips, the images from the initial portion of the approach can be generally

characterized as follows. The three spots of interest are located in the top third of the

image, slightly left of center. They are brighter than their immediate surroundings, but

they are not necessarily the three brightest spots in the entire image. The three spots are

located within approximately 35 pixels of each other horizontally and 15 pixels

vertically, and each spot is less than 4 pixels wide and less than 6 pixels tall.

a. Bisection Thresholding

As discussed previously, the bisection thresholding method is based on the

assumption that the three spots of interest are the three brightest spots in the portion of

the image that is being analyzed. Because it can not be assumed that the three spots of

interest are the three brightest spots in the entire image, the portion of the image to be

analyzed must be reduced to a point where any spots that are brighter than the three spots

40

of interest are eliminated. This is accomplished by placing an appropriately sized search

box around the area where the three spots of interest are expected to appear. To give

reasonable assurance that the search box will not include any spots brighter than the three

of interest, it is typically not sized much larger than the area in which the three spots are

located. This fairly precise sizing of the search box necessitates precise placement of it

as well if this method is to be successful. However, because only general assumptions

can be made about the location of the three spots of interest in the first image to be

analyzed, this method is not suitable for reliably determining the image plane coordinates

of the three spots in the first image.

b. Polynomial Difference

The precision with which the filter must be positioned using polynomial-

difference method is not as stringent as that with which the search box is placed in the

binomial threshold method. However, to most effectively shape and position the

respective Weibull and Gaussian filters appropriately to properly isolate the three spots of

interest requires that the three spots appear in the first image reasonably close to where

they are expected. As long as the three spots consistently appear close to the same

position within the image at the beginning of the image sequence, this method will

produce acceptable results. However, if this consistency can not be achieved, the shape

and position parameters for the distributions need to be changed accordingly. This is a

potentially tedious prospect, depending on how inconsistently the three spots are located

in each initial image.

41

c. Sliding Average

Unlike the previous two methods, the sliding average does not depend on

any a priori knowledge of the position of the three spots of interest. Instead, it relies on

the three spots being significantly brighter than their immediate surroundings, being

among the brightest several spots in the entire image, and being located relatively close to

each other compared to the other bright spots in the image. All of these three

dependencies are satisfied by the scenario under consideration. Thus the sliding average

method is most suitable for determining the image plane coordinates of the three spots of

interest in the initial image of the sequence.

2. Successive Coordinate Determination

Whereas the dependence on a priori knowledge of the three points' position

effectively eliminated the polynomial difference and bisection thresholding methods from

consideration for analysis of the initial image in the sequence, all three of the methods are

legitimate candidates for processing the successive images in the sequence. Clearly,

when the video clip of a landing approach consists of approximately 480 still images

gathered at a rate of 30 images per second, the time required to process each image is of

great interest. For the sake of comparison, a MATLAB script was developed for the

sliding average and polynomial difference methods that ran each process iteratively on

the same image 140 times. The image was the initial image in a representative video clip

recorded during an approach to landing made during actual flight test of a UAV. To

generate the bisection thresholding data, the method was applied to the first 140

successive images in a representative video clip of an approach performed during flight

42

test. Each of these scripts was run on the same personal computer (PC), which was

configured with a 600 MHz Central Processing Unit (CPU), 256 MB of Random Access

Memory (RAM), and the Microsoft Windows NT Version 4.0 operating system. During

the time that each of these scripts was running, no other user application was in use; that

is, all available resources within the PC were available to the script alone. This

evaluation facilitated an order of magnitude comparison of the three proposed methods.

a. Sliding Average

While the sliding average method's generality make it best suited for

processing the initial image in the sequence, that generality results in it being less

desirable for processing the successive images in the sequence. To retain its generality,

this method performs numerous computations on each pixel in the image, which equates

to 307,200 pixels in a 640 by 480 image. The average time required to perform the

sliding average method on a single image from early in the landing approach is

approximately 34.9 seconds, as determined via the test described in the previous

paragraph. The results of this test are presented as a histogram in figure 18.

43

120

100

1 80

tf>
o. 60
£

Time to Determine Coordinates Using Sliding Average Method (600 MHz CPU, 256 MB RAM)

si
E 40

20

30 32

mean = 34.8995

36 38 40
Seconds

44

Figure 18. Sliding Average Method Performance

An additional weakness of the sliding average method is its assumption

that the three spots are closer to each other than any of the other bright spots in the image.

While this is generally true in the early portion of the landing approach, as the aircraft

gets closer to the landing point, the three spots spread apart in the image plane until they

are the full width of the image (640 pixels) apart. The resulting deterioration in the

method's performance in processing images from the latter half of the landing approach

make it unacceptable for processing the image sequence.

44

b. Polynomial Difference

The polynomial difference method was also qualitatively evaluated in the

manner described above. As can be seen in the histogram presented in figure 19, this

method enjoys an order of magnitude improvement in speed over the sliding average

method under the test conditions described. The average time required to perform the

polynomial difference method on a single image from early in the landing approach is

approximately 4.1 seconds.

Time to Determine Coordinates Using Polynomial Difference Method (600 MHz CPU, 256 MB RAM)
801 1 1 ! :

mean = 4.0806

Seconds

Figure 19. Polynomial Difference Method Performance

The major weakness in the polynomial difference method with respect to

processing the successive images in the sequence is related to the shape and location

45

parameters of the two distributions that comprise it. As the landing approach proceeds,

the three spots of interest migrate apart in the image plane, and the center of the triangle

they define could also potentially move within the image. It is this triangle center that is

centered in the filter weighting scheme as previously described. In order to maintain the

center of the weighting filter over the center of the spot triangle, both the shape and

location parameters for each of the distributions would need to be adjusted and a new

filter generated with each image processed to ensure the resulting filtered image could be

reliably thresholded to produce the correct coordinates of the three spots. Because this

approach would be more computationally involved than computing the spot coordinates

in a single image using a static filter, it is clear that the mean time to process a single

image in a sequence of successive images using the polynomial difference method would

increase significantly from the results presented above although no simulation was

performed to substantiate this hypothesis.

c. Bisection Thresholding

As mentioned previously, to be effective the bisection thresholding

method must be applied to an image, or portion thereof, in which the three spots of

interest are the three brightest spots in the area under consideration. To evaluate the

performance of the bisection thresholding method, each image had a rectangular

processing box placed around the area in which the three spots of interest were expected

to appear under the assumption that any spots in the image brighter than the three of

interest would be located outside the processing box. The bisection thresholding method

was then applied to the area inside the processing box for each image in the video clip

46

under the test conditions described above. The results of this evaluation are presented in

figure 20.

Time to Determine Coordinates Using Bisection Threshold Method (600 MHz CPU, 256 MB RAM)

0.5
Seconds

0.65

Figure 20. Bisection Thresholding Method Performance

With an average time to determine the coordinates of the three spots of

approximately 0.5 seconds, the bisection thresholding enjoys an order of magnitude

performance improvement over the polynomial difference method and a two order of

magnitude improvement over the sliding average method under the test conditions

described previously. Furthermore, the bisection thresholding method was applied to a

full length video clip of an entire approach to landing consisting of approximately 480

successive images. The longest time required to determine the coordinates of the spots in

47

any of the images was less than 0.9 seconds, and the vast majority of the images were

processed in approximately 0.5 seconds. These results are presented in figure 21.

Time to Process Individual Images (600 MHz CPU, 256 MB RAM)
1

0.9-

0.8-

0.7

•a
s
S0.5

E
0.4

0.3

0.2

0.1

0
50 100 150 200 250 300

Frame Number
350 400 450 500

Figure 21. Time Required to Process Each Image in Landing Approach Video Clip

Clearly, when it is possible to predict the approximate location of the spots

in the subsequent image frame based on the spot coordinates of the current frame, the

bisection thresholding method is the most efficient of the three methods presented.

48

D. IMPLEMENTATION

1. Introduction

The algorithms described previously in this chapter are implemented in MATLAB

functions and combined to process onboard video recordings of numerous landing

approaches flown by a UAV. Because these algorithms are intended ultimately to be

used to process flight imagery in real-time, emphasis is placed on implementations that

would process each image expeditiously. It should not be forgotten, however, that this is

a prototype implementation with room for refinement.

The algorithms are designed to process recordings captured on a digital video tape

recorder from an infrared video camera placed in the nose of an aircraft. In accordance

with the National Television Standards Committee (NTSC) standard, the frame rate of

the captured video is assumed to be approximately 30 frames per second [Ref. 9], so

each second of video can be parsed into 30 still images that can then be processed using

algorithms described above. Because the typical approach is approximately 15 to 17

seconds long, analysis of each approach requires between 450 and 510 individual image

files to be processed. The software used to process the sequences of still images is

implemented in locally written MATLAB Version 5.3 and SIMULINK 3 functions. The

native functions in the Image Processing Toolbox are especially useful. The capabilities

of the Image Processing Toolbox are completely described in the User's Guide [Ref. 8],

and are summarized below as required. The code for all of the locally written algorithms

and functions is provided in Appendix A.

49

The individual still images are processed offline to determine the image plane

coordinates of the three spots of interest in each frame. The image processing algorithms

are implemented to process images at as high a rate as possible to support a high position

estimate update rate based on vision sensors. A sliding average algorithm is applied to

the first image of the sequence to locate the three spots of interest because this algorithm

has the least dependence on a priori knowledge of the spot characteristics, as described

previously. Once the three spots are located in the first image of the sequence, their

positions are used to predict the location of the three spots of interest in the subsequent

image. Based on this prediction, a rectangular processing box is sized and positioned

over the next image in the sequence to include the three spots of interest but to exclude as

much of the remainder of the image as possible. A bisection thresholding algorithm is

then applied to the portion of the image that is contained within the processing box to

determine the image plane coordinates of the three spots of interest. Once the spot

coordinates are determined for the current image frame, they are used to adjust the

rectangular processing box dimensions and position to include the predicted position of

the three spots of interest in the next frame. This process is repeated until the coordinates

of the three spots of interest are determined in all of the still images in the sequence. The

collection of coordinates of these three spots are used as the input to an implementation

of Yakimenko and Kaminer's numerical three-point algorithm that computes estimates of

the aircraft's position and velocity in the Local Tangent Plane.

50

2. Image Capture and Storage

The video tape recorder (VTR) used to capture the live IR camera video of the

approaches is also used to play the recorded video back in NTSC standard format for

post-flight analysis. The VTR is interfaced to a Windows NT™ personal computer (PC)

via the IEEE 1394 interface standard using an Adaptec AHA-8945 Combined 1394/Wide

Ultra SCSI PCI Host Adapter. The associated Adaptec software utility, DVDeck, permits

control of VTR functions from the PC. DVDeck is used to play the recorded approaches

and store them to the PC hard drive. The approaches can be stored either as movie files in

.avi format or as sequences of individual still images, or frames, which are stored in

Microsoft Windows Bitmap (.bmp) format, with a pixel resolution of 640 x 480. For

analysis of each recorded approach of interest, the recorded video is converted to a

sequence of still frames which are saved as individual truecolor (RGB) .bmp files on the

PC hard drive.

3. Program Structure

The MATLAB-based program written to determine the image plane coordinates

of the three spots of interest is divided into numerous subroutines that are defined along

logical functional boundaries. Each of the subroutines performs smaller, well-defined

tasks in support of the main program. The main program, controller.m, is used to direct

the sequence of and conditions under which the image processing subroutines are called,

to define and initialize global variables and constants, and to call data analysis

subroutines.

51

4. Image Loading and Normalization

MATLAB supports several graphics file formats, including the Microsoft

Windows Bitmap (.bmp). When an RGB image is read from a .bmp file using the

MATLAB native imread.m function, the image data is assigned to an m-by-n-by-3 array ,

where m is the number of pixel rows and n is the number of pixel columns. Each of the

levels in the third dimension of the image array represents the data for one of the three

colors. The values in the arrays represent individual pixel luminance and are stored as

unsigned 8-bit integers ranging from 0 to 255. Although the .bmp file contains RGB

data, in this application it represents a black and white IR camera image. After the file is

loaded into the workspace, it is converted from an RGB image to grayscale by the native

rgb2gray.m function, which eliminates the hue and saturation information while retaining

the luminance [Ref. 8]. This makes it possible to keep all relevant image information in

a two dimensional array rather than a three-level, three-dimensional array, thereby

reducing by two-thirds the size of the array required to represent the image. After the

original RGB image array was converted to a grayscale image array, the values of the

array were converted to double precision integers and divided by 255 to normalize the

luminance values to range between 0 and 1 using the locally written imnorm.m function.

This array is hereafter referred to as the image array. This operation facilitates

subsequent image processing algorithms without losing any fidelity from the original

image file.

52

5. First Image

The first image is loaded into the MATLAB workspace and normalized as

described above. The sliding average algorithm is applied to the image array for the first

image in the landing sequence. It is expected that the three spots are brighter than their

immediate surroundings, but the only assumption that can be made with respect to their

position is that they initially appear somewhere in the upper third of the image. Without

a more specific estimate of the spots' initial position, the Polynomial-Difference method

can not be applied effectively.

A local function, averagebox.m, applies the sliding average algorithm to the first

image of the sequence of images to be processed in order to initially determine the

coordinates of the three spots of interest. Once the spot coordinates are determined, the

initial processing box size and position are determined using the local function

nextbox.m.

a. Sliding A xerage

The image array passed to averagebox.m is processed one row at a time,

starting with the bottom row of the image and proceeding sequentially to the top of the

image. First, the average pixel luminance value of the row is computed, then each pixel

of the row with a luminance less than the row average is set to zero. For each pixel with

a luminance value greater than the row average, its luminance value is replaced by the

difference between the luminance value for that pixel and the row average. A seven-

pixel window is then "slid," one pixel at a time, over all the pixels in the row. At each

53

position of the window, the intensity value of the pixel on which the window was

centered is replaced by a quantity computed as follows:

2n+l

S'.
center. center« , 1 n + l

n =number of pixels in the window on either side of window center

All negative elements of the row are then replaced with zeros. Positive

elements of the row are unchanged by this operation. The mean luminance, I, and

standard deviation, o, of the row are then calculated. Each element of the row is then

replaced with either the quantity (I-I-10a) or 0, whichever is greater. This effectively

reduces to zero all elements in the row except those that are extremely bright relative to

their surroundings. This process is repeated for each row of the image array. A

representative image with the location of each of these bright spots as determined by the

algorithm superimposed on it as '+' symbols is presented in figure 22. Note the number

of '+' symbols over the three spots of interest as well above and left of the landing area

and along the right side of the runway near the bottom of the image.

54

Figure 22. Representative Processed Image with Brightest Spots Indicated

After the image array is manipulated as described above, the five brightest

groups of pixels (i.e., spots) in the image are located as described below. The new,

manipulated image array is searched for the brightest pixel in the entire array. Once

located, a square measuring 15 pixels on each side is centered over it, and the luminance

values of all other pixels within the square are set to zero. This prevents the algorithm

from locating five bright pixels that are adjacent to each other (i.e., part of the same spot)

because the intent of this algorithm is to locate the five brightest groups of pixels (i.e.,

spots) and not just the five brightest pixels. The size of this square is determined

empirically by observing the size and orientation of the spots of interest in numerous

55

images from the initial phase of the landing approach when the landing area is first

visible. If the squares were too small, they would not include all of the pixels that

comprise a given spot, resulting in one spot being represented as two. If the square were

too large, it may contain more than one spot of interest, thereby masking two spots as

one. The coordinates of the center of the square are noted, and this procedure is repeated

until the five brightest pixels groups are identified. A representative image with the

location of the five brightest spots as determined by the algorithm marked by white

squares is presented in figure 23. Note white squares around each of the three spots of

interest and two spots on the right edge of the runway near the bottom of the image.

Figure 23. Representative Image with Five Brightest Spots Indicated

56

The next task for the algorithm is to identify which three of the five pixel

groups represent the three spots of interest. This is done by computing the distance from

each spot to the other four and adding the distances. The three spots with the smallest

distance sums are considered to be the three spots of interest. This method is successful

when the three spots of interest are located relatively close to each other, and there are no

other spots of similar luminance in their immediate vicinity. No a priori knowledge of

their location in the image is required. A representative image with the location of the

three spots of interest as determined by the algorithm superimposed on it as 'o' symbols

is presented in figure 24. Note that each of the 'o' symbols is over one of the spots of

interest.

Figure 24. Representative Image with the Three Spots of Interest Indicated

57

Once the image plane ([M,V]) coordinates of the three spots of interest are determined,

they are transformed to [i, j] coordinates and passed to the local function nextbox.m to

generate a processing box for the first image of the sequence to be processed.

6. Successive Images

Because only l/30th of a second lapses between frames, it is anticipated that the

positions of the three spots of interest will not change drastically from frame to frame.

Furthermore, with the IR camera effectively boresighted on the three spots through the

entire approach, it was also anticipated that there will be very little vertical or horizontal

drift of the group of spots across the image frame, other than that caused by minor pitch

and heading adjustments and aircraft vibration. Instead, the three spots are expected to

gradually spread away from each other in the image plane until the camera is close

enough that all three spots can not be contained in the image frame simultaneously.

However, because the camera boresight is fixed relative to the aircraft body axes, large

vertical and horizontal drift rates of the spots in the image plane are induced by sudden

pitch and yaw maneuvers of the aircraft during the approach. Recognizing the

incremental changes in spot position, it is expected that a processing box can be

successfully positioned to capture the three spots of interest from frame to frame based on

the position of the spots in the current frame.

a. Processing Box Size and Position Determination

A local function, nextbox.m, determines the size of and predicts the

location for the processing box for the subsequent image once the image plane

58

coordinates of the three spots of interest are determined. This function determines the

difference between the largest and smallest i coordinates of the three spots of interest, Aj,

and the difference between the largest and smallest j coordinates of the three spots of

interest, Aj. The top boundary of the subsequent processing box is determined by

subtracting the product of Aj and a scaling factor from the smallest i coordinates of the

three spots of interest. The bottom boundary of the subsequent processing box is

determined by adding the product of Aj and the same scaling factor to the largest i

coordinates of the three spots of interest. The scaling factor for the top and bottom

boundary computations is empirically determined to be 0.7. Likewise, the left boundary

of the subsequent processing box is determined by subtracting the product of Aj and a

scaling factor from the smallest j coordinates of the three spots of interest, and the right

boundary of the subsequent processing box is determined by adding the product of Aj and

the same scaling factor to the largest j coordinates of the three spots of interest. The

scaling factor for the top and bottom boundary computations is empirically determined to

be 0.2. A safeguard is incorporated in the function to disallow selection of a boundary

that would be outside the image area. There are no instances of the spot of interest falling

outside the predicted processing box when this process is executed on video clips of

several different approaches. Results from one of the representative video clips are

presented in figure 25. Note that the upper and lower limits of the y-axis in each of the

plots corresponds to the respective scaling factor for that processing box dimension, and

that none of the data exceeds the upper or lower limits of either plot.

59

Expansion of box top/bottom boundaries as % of A(

60

c 40 o

1 20
Q.

UJ 0

1-20
<u
°--40

-60

20

0: f nR-^

top
bottom

50 100 150 200 250 300 350 400 450 500
Frame

Expansion of box left/right boundaries as % of Aj

%4^;Wf^/H-

-1 I L_

left
right

50 100 150 200 250 300 350 400 450 500
Frame

Figure 25. Search Box Expansion for Representative Video Clip

The trend of the processing box height and width, measured in pixels,

through a full video clip of an entire approach is presented in figure 26.

60

Search Box Dimension Size

400

350

300

250

:200

150

100

50-L

50 100 150 200 250 300
Frame Number

350 400 450 500

Figure 26. Search Box Size for Representative Video Clip

7. Image Plane Coordinates

Following variable and constant initialization and determination of the location

and dimensions of the first processing box, an iterative loop is executed to: (1) load and

normalize the next image in sequence, (2) locate the three spots of interest in the image

and compute the image plane coordinates of their centers, (3) compute the dimensions

and position of the processing box for the next image in the sequence. This loop is

repeated for each image in the sequence to be processed. As the image plane coordinates

are computed for the three spots of interest in each image, the most recent set of

coordinates is appended to an array that includes all of the coordinate sets for the entire

61

sequence of processed images. Upon completion of the loop, this array contains a

complete set of coordinates for the three spots in the entire image sequence.

a. Determination of spot center

Within the iterative loop of controller.m, the function findcenter.m is

called for each image to locate the three spots of interest and compute their centers. This

function initializes values for 8; and &} as well as the upper and lower threshold limits and

applies a bisection thresholding search to the area of the image defined by the processing

box that is predicted as a result of the previous iteration of the loop.

An initial threshold is applied to the portion of the image contained within

the processing box. All of the pixels in the processing box whose luminance exceed the

threshold are assigned to a new array. If no pixels are found that exceed the threshold,

the threshold is reduced to the value that bisects the lower half of the remaining range of

allowable thresholds, and the new threshold is reapplied to the processing box. This

process is repeated until the threshold is low enough that some pixels are found that

exceed it. In practice, however, the initial threshold is chosen such that it is low enough

to include pixels from all three spots of interest for the vast majority of the images.

The array that contains all of the pixels whose luminance exceeds the

threshold is then sorted and the number of spots is determined as described previously.

As individual spots are identified, the coordinates of their component pixels are removed

from the array of all "bright" spots and saved to another distinct array, one for each spot

as it is isolated. One additional mechanism is added in this implementation. Since it is

desired to isolate exactly three spots, sorting and counting of pixels halts as soon as more

62

than three spots are identified at the current threshold. This prevents time from being

wasted processing more pixels after it is determined that more than three spots are present

at the current threshold level. The threshold is then raised using the bisection thresholding

technique previously described, and the process is repeated until exactly three spots are

extracted from within the confines of the processing box.

As implemented, dynamic threshold adjustments can be made until the

difference between the upper threshold limit and the lower threshold limit is less than

0.005. Without such a limit, the bisection algorithm would iteratively halve the range of

acceptable thresholds until the range equaled the computational precision of the host

computer, which would result in an unacceptably long delay in individual image

processing time. However, with such a limit in place, an additional mechanism is

required to accommodate the case in which the bisection algorithm reaches the limit

before exactly three spots are isolated from the portion of the image inside the processing

box. This occurs in the latter portion of the landing approach, when the three spots

appear their brightest, saturating the available range of pixel luminance.

By the time the dynamic threshold adjustments alone are inadequate to

isolate the three spots, the sizes of the three spots (the number of pixels that comprised

them) has increased significantly relative to what they are at the start of the approach

when the aircraft is at greater range from the landing area. To accommodate the larger

spot sizes observed in the later frames of the image sequence, the function includes a

mechanism to dynamically increase the values of 8i and 5j when the range of allowable

threshold values was reduced to 0.005 or lower. This effectively redefines the number of

63

adjacent pixels that comprise a spot as required as the spot size increases in the image as

the aircraft approaches the landing area. Conditionally adjusting the working definition

of a spot by increasing 8i and 5j yields an effective complement to the use of the

luminance threshold to efficiently isolate the three spots of interest. The final threshold

for each of the images in a representative video clip is presented in figure 27.

Final 3-point Threshold

0.9

0.8

0.7

0.6
"o
■5

I 0.5

0.4

0.3

0.2 h

0.1

50 100 150 200 250 300
Frame number

350 400 450 500

Figure 27. Final Threshold at Which Three Points Isolated

When exactly three spots have been isolated, the individual arrays of

pixels for each spot were passed to the local function weightedcenter.m which computes

the center of each spot using the weighting method described previously. These

computed centers are then returned by findcenter.m to the function that originally calls it.

64

b. Processing box update

After the individual centers for each of the three spots of interest are

computed and returned to controller.m, the local function nextbox.m updates the size and

position of the processing box using the method previously described. The program then

returns to the beginning of the iterative loop. With images in the sequence remaining to

be processed, the loop executes; otherwise, the program performs the requisite sorting

and transformation of the spot center coordinates in ij coordinates to image plane

coordinates so the data is compatible with the numerical three point algorithm.

8. Data Transformation and Storage

a. Final sorting

The three point algorithm specifies the order in which the spot coordinates

are passed to it. As they appeared in the image, the first point is the lower, rightmost

vertex of the triangle defined by the three points. The third point is the leftmost vertex of

the triangle, and the second point is the remaining vertex.

The local function sortij!23.m accepts the array produced by the iterative

loop that consists of the complete set of spot centers in ij coordinates for each frame in

the sequence of processed images. Each row in the array represents one image frame and

contains three coordinate pairs, one for the center of each spot in the corresponding

image. However, for a given row, the coordinate pairs are in no specified order.

The sortijl23.m function first locates the left most point, Point 3, by

determining which of the three has the smallest column coordinate. Of the remaining two

65

points, the one with the greater row coordinate, and therefore the "lowest" in the image,

is Point 1. The remaining point is Point 2.

Sorting is performed in this order to take advantage of the observation that

Point 3 always appears as the leftmost point in the image and sometimes appears lower in

the image than Point 1. Point 1 always appears lower than Point 2, but due to aircraft

bank angle, it is not always lower than Point 3. By identifying Point 3 first based on its

column position, Point 1 can then be conclusively identified from the remaining two

points.

b. Conversion to Image Plane Coordinates

Once the spot center coordinates are placed in proper order, they are

transformed from the ij coordinate system previously described to image plane

coordinates. The local function ij2uv.m performs this straightforward transformation by

algebraically shifting the origin of the ij coordinate system from the upper left comer of

the image to the center of the image.

c. Data Storage

Once the entire sequence of images is processed, the frame number and

image plane coordinates of the center of each of the three spots in each image frame are

exported as a single matrix to a MATLAB data file.

9. Integration with the Three Point Algorithm

The image data file exported by the image processing algorithm is formatted in

such a manner that it was fully compatible with a high-fidelity SIMULINK

66

implementation of Yakimenko and Kaminer's three point algorithm. By marrying the

image processing MATLAB implementation with the SMULINK implementation of the

numerical three point algorithm, the feasibility of vision-based navigation can be

demonstrated based on actual flight test data.

67

THIS PAGE INTENTIONALLY LEFT BLANK

68

V. FLIGHT TEST

A. UNMANNED AERIAL VEHICLE DESCRIPTION

1. Airframe Description

The flight vehicle used in this investigation was the US Army FOG-R Unmanned

Aerial Vehicle (UAV). Built by BAI Aerosystems, Incorporated of Easton, Maryland, it

was a high-winged monoplane with a pod-and-boom fuselage and a swept vertical fin and

rudder and low mounted horizontal tail. One 10 hp 150 cc two-cylinder piston engine

with a two-blade, fixed pitch wooden propeller was center-mounted on a pylon above the

wing. The FOG-R had fixed tricycle landing gear. The FOG-R was radio controlled (RC)

with a Futaba Pulse Width Modulation (PWM) transmitter similar to those used by sport

RC modelers. Comprehensive descriptions of the airframe can be found in Froncillo,

Komlosy, and Rivers [Refs 10,11,12]. The FOG-R is pictured in figure 28.

Figure 28. US Army FOG-R Unmanned Air Vehicle, Side View

69

Key airframe and performance parameters are presented in Table 1.

Parameter Value

Takeoff Weight 90 lbs

Payload 25 lbs

Speed 90ft/s

Ceiling 5000 ft

Wingspan 10.6 ft

Reference Wing Area 17.6 ft2

Airfoil NACA 2415

Maximum Lift/Drag Ratio 7

Table 1. US Army FOG-R UAV Airframe Characteristics

2. Sensor Description

a. Infrared Camera

The FOG-R UAV was equipped with an Infrared Components

Corporation MB IRES IMAGE CLEAR™ Uncooled Microbolometer Module-based

infrared (IR) video camera. The camera included a Boeing U3000A uncooled 8-12 urn

sensor and the Microbolometer Module which produced National Television Standards

Committee (NTSC) video signal and output it via a RS-232 interface. The focal length of

the camera lens as installed in the FOG-R UAV was 25mm with a field of view of 40° x

30°. The pixel resolution of the camera video was 320 x 240. Computed pixel height as

a function of range from the target is presented in figure 29.

70

Pixel Height/Width vs. Range from Target

1

0.9

0.8

|0.7
c

JE
£0.6

1
■&0.5
V

SZ

"55
*0.4

CL

0.3

0.2

0.1

0
(

I ! i i 1 i ! | i y

) 50 100 150 200 250 300 350 400 450 500
Range from target (length)

Figure 29. Pixel Height/Width vs. Range from Target

Additional information on the camera can be found in the MB IRES IMAGE CLEAR™

Operator's Manual [Ref. 13].

The camera was rigidly mounted in the nose of the aircraft, and the

pointing angle was fixed in the x-z plane of the aircraft body axes, declined five degrees

from the longitudinal axis of the aircraft. As a result of the fixed mounting in the aircraft,

the aircraft heading and attitude alone determined the camera pointing angle. Because

the focal length of the camera was fixed, the camera's field of view was fixed.

71

b. Video Tape Recorder

The video output of the ER camera was recorded in the FOG-R using a

Sony Digital Video Walkman, model GV-D300. This digital video tape recorder (VTR)

recorded the live NTSC format video signal from the IR camera in the Digital Video

(DV) Standard format on a DV mini video magnetic cassette using a helical scan. In

addition to the video image, the VTR also recorded the elapsed recording time of each

video frame. Display of this elapsed timestamp on the image frame could be activated or

deselected. Regardless of the chosen display option, the timestamp was available to the

operator only visually during post-flight processing. No method of electronically

extracting the timestamp data from the video tape for additional computation could be

identified. The VTR as installed in the FOG-R weighed 21.5 ounces and consumed 6.2

W when recording.

c. Differential Global Positioning System

The FOG-R UAV was equipped with a Trimble AgGPS 132 Differential

Global Positioning System (DGPS) system. The AgGPS 132 system consisted of a 12

C/A-code channel receiver, a combined GPS/DGPS receiver, and a ruggedized antenna

cable. The receiver included ground beacon and satellite DGPS capability. The receiver

produced Universal Time Code (UTC) stamped messages that included aircraft latitude,

longitude, antenna height (altitude), GPS quality indication, number of satellites,

Horizontal Dilution of Precision (HDOP), speed over ground, and magnetic variation.

These messages were transmitted in ASCII format via 9600 Baud spread spectrum radio

frequency (RF) data modems to a ground-based receiver which stored the received data

72

in text files. Additional information about the system may be found in the Trimble

AgGPS 132 Operator's Manual [Ref. 14].

An illustration of sensor installation in the FOG-R UAV is provided in figures 30

and 31.

Figure 30. ER. Camera and VTR Installation in FOG-R UAV

73

Figure 31. DGPS Installation in FOG-R UAV

B. FLIGHT PROFILES

As presented in reference 1, an observer's position in three dimensions can be

unambiguously resolved if three visual reference points of know geometry and

orientation are in the observer's field of view. This conclusion is fundamental to the

determination of aircraft position and velocity estimates in the Local Tangent Plane

(LTP) based on the observation of three reference spots on the ground. Recognizing this,

live flight test profiles were constructed to represent a UAV landing on a specified

landing spot with three distinct reference spots that appeared prominently when viewed

with the DR. video camera installed in the nose of the FOG-R. One flight test evolution

was conducted, consisting of three sorties. Each sortie included a combination of several

74

low approaches and approaches flown all the way to landing touchdown. The majority of

the approaches were flown using a left hand traffic pattern. The FOG-R was controlled

manually via remote control at all times.

For the flight test evolution, three ordinary household charcoal grills were placed

on either side of the runway in the proximity of the desired landing area, one grill on the

left side of the runway and the other two on the right side. The positions of the grills

relative to each other and relative to the ground were measured for post-flight data

analysis, and charcoal fires were lit in each. The FOG-R was configured with the sensor

suite described above, and video of each of the landing approaches was captured on video

tape using the IR camera mounted in the nose of the aircraft and the digital VTR.

Additionally, the time-stamped DGPS position and speed data of the FOG-R was

recorded throughout its flights via a radio frequency modem downlink to a laptop

computer. A radio frequency downlink of the video imagery was attempted, but frequent

dropouts of the signal prevented it from being maintained consistently. The primary goal

of the first flight test evolution was to assess the operation of the IR video camera in the

flight environment and record video imagery of the landing approaches on the digital

VTR installed in the aircraft. There was no intention to perform real-time processing of

the video images during the first flight test period, but it was hoped that in later flight

tests that this could be investigated as well. Unfortunately, due to project constraints, it

was not possible conduct any additional flight tests during the timeframe of this

investigation.

75

THIS PAGE INTENTIONALLY LEFT BLANK

76

VI. RESULTS

A. POST FLIGHT PROCESSING

Using the data collected during the flight test evolution, the implementation of the

algorithms presented in Chapter IV was refined to develop the final image processing

program. The program processed video clips from several landing approaches during the

months following the flight test evolution, and representative results are presented here.

B. SPOT LOCATION

A composite plot of the row- and column-wise positions of the centers of each of

the three spots of interest in each frame is provided in figure 32. The spot centers are

plotted as dots with different shades, and the borders of the processing box are plotted as

solid lines. The left panel displays the row coordinate for each the three spot centers

versus frame number. In this image sequence the first frame number processed is frame

25, and the final frame in the sequence is frame 506. The right panel presents the column

coordinate for each the three spot centers versus frame number for the same image

sequence.

Two observations of great significance are made of this plot. First, for every

frame, there is a complete set of coordinates for each of the three spots. That is, there are

no drop outs in the entire sequence. Secondly, for every frame, the three spots are

located entirely within the horizontal and vertical boundaries of the processing box,

thereby validating the bisection thresholding and processing box size and position

determination algorithms.

77

Row position (i) of hotspots, (growth = 0.7 Column posfion (j) of hotspot, jgrowth = 0.2

50^

100

ii - H
!| i2
if • i3
W —- box

0%4 ff ;|t tW'Hf\

•if k$-

K1505-
« I
a !

i
200 r-

250 r

IV;

300l

100

200

ja
E

:300

4001-

500

200 400
Frame Number

600
S00

■ % \ :

: "Osi

• ii
12

• 13
— box

 i TJ ! 1 1
1 If
; l.C

200 400 600
Rxe! Cohjmn ©

800

Figure 32. Spot Position and Processing Box Borders For Representative Approach

C COMPARISON WITH DGPS

With a complete set of image coordinates from a processed video sequence, the

aircraft position in the local tangent plane can be estimated using the three point

algorithm. For analysis of the vision-based navigation algorithms already discussed, the

aircraft position estimates as determined from the vision-based algorithms were

compared with the aircraft position estimates determined from the Differential Global

Positioning System data for the same approach. Unfortunately, the sensor package

installed in the UAV did not possess a means to synchronize each sensor to a common

clock, so it was not possible to timestamp the data collected from each sensor using a

78

common time reference. This significantly limited error analysis by preventing a direct

comparison of the sensor data based on time of collection. Instead, the two sets of

position estimates are plotted in figure 33 versus position vice time with the axes scaled

to maintain a 1:1 proportion. Superimposed on the data plots are graphical

representations of the runway edges and the landing area, represented by the measured

hotspot locations, as indicated in the figure legend. The upper panel represents the lateral

position (north-south vs. east-west) in the local tangent plane, whereas the lower panel

represents altitude (negative z-direction) vs. the y (east-west) axis.

300
Lateral Position Estimates in Local Tangent Plane (LTP)

-600 -500

-100

"§■
"1-50
i-

Nl

-400 -300 -200
ytTP(m)

Vertical Position Estimates in Local Tangent Plane (LTP)

-600 -500 -400 -300 -200
yLTP(m)

-100 100

Figure 33. Comparison of IR and DGPS Position in Local Tangent Plane (2-D)

79

Despite the lack of a synchronous timestamp, there is clearly a close correlation

between the DGPS position estimates and the vision-based position estimates in lateral

and vertical position. There appears to be a slightly greater difference between the two

estimates at greater ranges from the landing area. However, as the range from the vehicle

to the landing area decreases, the correlation between the DGPS and vision-based

position estimates appears to decrease. Also of note from figure 32 is that the greatest

rates of horizontal and vertical change of the spots in the image plane, which correspond

to higher aircraft yaw and pitch rates respectively, occur during the first half of the

approach. Figure 34 presents a quasi three-dimensional perspective of the same data set.

Figure 34. Comparison of IR and DGPS Position in Local Tangent Plane (3-D)

80

VII. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

1. General

The primary objective of this thesis was accomplished; the feasibility of using

vision-based sensors for aircraft navigation in support of autonomous landing has been

demonstrated. A live flight test was conducted to capture video imagery of a UAV

landing taken using an infrared video camera mounted in the aircraft's nose. Algorithms

were developed to extract the relevant visual features that defined the landing area from

the video and use the extracted data to compute estimates of the UAV's position in the

local tangent plane. The aircraft position estimates based on the vision sensor were

shown, within the limits of the test, to correlate with those produced by the Differential

Global Positioning System, which were considered the truth reference for this evaluation.

2. Specific

a. Image Processing Algorithms

The image processing algorithms were developed in the spirit of

demonstrating the feasibility of vision-based navigation using actual flight video imagery

collected by an aircraft. Generality was maintained in the algorithms where possible but

not at the expense of demonstrating the results of the flight test evolution. It is hoped that

the reader will appreciate the feasibility of vision-based navigation and see fit to utilize,

modify or expand the algorithms presented herein to satisfy his own application.

81

Two different processing methods were combined to address the

respective challenges of processing the first image of a sequence with little a priori

knowledge and then processing the subsequent images utilizing the knowledge gained

from the previous image. By approaching the problem in this manner, the time required

to process each image was minimized within the context of this investigation.

b. Real-time Processing

All of the video imagery was processed offline, after the flight evaluation.

With an average time required to process the first image in the sequence approximately

35 seconds, and the average time to process the subsequent images approximately 0.5

seconds, real-time data processing is not achieved by the algorithms presented here.

c. Flight Test

A tremendous amount of data and findings were gleaned from the flight

test evolution. With the FOG-R sensor package limited to the IR camera and the DGPS,

navigation analysis was effectively limited to position data. However, without a common

time signal in the sensor package from which all sensor data could receive a common,

synchronized timestamp, error analysis of the position estimates from each of the sensors

was severely restricted.

This flight test utilized a stationary landing platform, namely, a defined

area on a land-based runway. While this is a logical starting point for an investigation of

this topic, the maritime application of vision-based navigation is for providing relative

position and velocity information between the aircraft and a moving landing platform.

82

B. RECOMMENDATIONS

1. Future Investigations

This investigation has merely scratched the surface of the realm of vision-based

navigation for autonomous landing. Numerous other investigations should be made to

broaden the understanding of vision-based navigation. A more detailed examination of

source of error in vision-based position and velocity estimates should be made. The

influence of pitch and yaw rates as well as range from the landing area should be

investigated. Image processing algorithms that more robustly address out-of-frame

events should be developed. The influence of out-of-frame events on the navigation

solution should be investigated. The blending of all passive navigation sensors to achieve

an optimum estimate of the vehicle's navigation state vector should be pursued.

2. Flight Test

Since only one flight test evolution was performed, it is strongly recommended to

continue flight testing to refine current algorithms. The quantity and quality of data

obtained and the findings that were from the initial flight test are a strong endorsement

for the value of flight test. Fight test is a must to fully characterize system performance

in the investigations proposed in the previous chapter. Flight test utilizing a moving

landing platform is strongly recommended as appropriate for the UAV sensor system's

maturity.

83

3. UAV Enhancements

Two significant enhancements to the FOG-R UAV should be made as soon as

possible to maximize the gain from future flight test. An Inertial Navigation System

should be installed to measure thrust accelerations and angular velocities in support of

future investigations. Equally important, a common, synchronized timestamp of all

sensor data is essential to perform any meaningful error analysis in future investigations.

84

VIII. REAL-TIME CONTROLLER HARDWARE INTERFACE

A. INTRODUCTION

The secondary purpose of this thesis is to present a modification of the Naval

Postgraduate School's Rapid Flight Test Prototyping System (RFTPS) to support NPS'

development and optimization of the guidance system for the U.S. Air Force's Affordable

Guided Airdrop System (AGAS).

The Air Force has identified a critical need to improve the accuracy of materiel

airdrop. Significant emphasis has been placed on the development of large-scale parafoil

systems. These systems provide the requisite accuracy for precision airdrop, but their

cost per pound is prohibitive. Alternative, low-cost systems are currently under

investigation by the U.S. Air Force. [Ref. 15]

Currently under design and development is the AGAS, which incorporates a low-

cost guidance, navigation, and control (GNC) system into fielded cargo systems. The

design goal of the AGAS is to provide a GNC system that can be placed in-line with

existing fielded cargo parachute systems and standard delivery containers. The current

design concept includes a navigation system and guidance computer that would be

secured to the existing container delivery system. Pneumatic Muscle Actuators (PMAs)

would be attached to each of four parachute risers and to the container and would effect

control by extending or contracting on command from the guidance computer. [Ref. 15]

The GNC system is a collective effort of students, scientists, and engineers at the

Naval Postgraduate School and Vertigo, Incorporated; the NPS contribution is the

85

optimization and testing of the parachute system [Ref. 16]. The RFTPS is crucial to this

effort.

The NPS RFTPS has been used successfully in conjunction with the FOG-R UAV

to support research and development of many student projects and theses. However, the

AC100/C30 real-time controller utilized by the RFTPS in previous projects has become

obsolete and been replaced by an updated device, designated AC-104. Both real-time

controllers are produced by WindRiver® (formerly, Integrated Systems, Incorporated),

and are used in conjunction with that company's MATRIX-X® modeling, simulation, and

rapid prototyping software package. The RFTPS with the AC-104 real-time controller

has not yet been used to support live flight test events. The updated real-time controller

incorporates two new input/output (I/O) modules that must be characterized before it can

be successfully used in support of AGAS development. The body of this chapter is

primarily concerned with characterizing the I/O modules of the updated real-time

controller.

B. SUMMARY OF PREVIOUS WORK

As discussed, the RFTPS has been successfully used in conjunction with several

previous efforts. The motivation and design considerations for developing the RFTPS as

well as a detailed system description are well documented by Hallberg, Kaminer, and

Pascoal [Ref. 17]. Dellicker assesses the feasibility of the AGAS concept and presents

initial flight test data as well simulation results that demonstrate the strong potential of

the AGAS to meet the requirements of low-cost precision airdrop [Ref. 15]. Williams

expands Dellicker's work by moving Dellicker's model from a MATLAB/SIMULINK

86

environment to a MATRIX-X® environment and refining it in anticipation of hardware-

in-the-loop analysis and flight test utilizing the AC-104 real-time controller [Ref. 16].

C. REAL-TIME CONTROLLER

1. Rapid Flight Test Prototype System Ground Station

The RFTPS ground station is responsible for flight control and data collection,

and consists of a host computer/real-time controller, a communications box, and two

Futaba RC controllers.

The heart of the ground station is the real-time controller. The AC-104 hardware

controller currently used in the RFTPS replaces the AC100/C30 system used in the

original implementation of the RFTPS [Ref. 17]. A Windows NT based personal

computer (PC) serves as the host computer and is networked with the AC-104 via

Ethernet. The host computer is used to perform all functions necessary to generate

executable code which is downloaded from the host PC and run on the AC-104.

The communications box contains all equipment necessary for communication of

control commands and flight data between the airborne vehicle and the ground station.

This includes two RF modems, a GPS receiver, and a Futaba pulse wave modulation

(PWM) receiver identical to what is installed in the airborne vehicle. The airborne

vehicle is controlled using two Futaba RC controllers. One controller, referred to as the

"slave", is modified to accept inputs from the digital to analog module installed in the

real-time controller via a 9-pin, RS-232 connector. The slave converts the voltages it

receives as analog input from the real-time controller to properly formatted PWM signals.

87

The slave then forwards the PWM signals to standard Futaba controller, referred to as the

"master", from which the commands are transmitted via radio frequency to the airborne

vehicle. The slave controller is connected to the master via a production Futaba hard line

data link cable. A safety pilot may intervene and assume manual control of the airborne

vehicle by releasing a spring-loaded trainer switch on the master controller. The trainer

switch must be actively held open to for the master to accept and transmit inputs from the

slave. Releasing the trainer switch causes the master controller to disregard inputs from

the slave and accept manual inputs from the safety pilot via the controls mounted on the

master. [Ref. 3]

2. MATRIX-X® Software Family

Installed on the host PC, the MATREK-X® software family includes

several individual, yet related, applications. Xmath is the computational element of the

package, and SystemBuild provides modeling and simulation functionality by using

predefined and user-defined functional blocks to model system elements. AutoCode is an

application that generates C++ source code from a SystemBuild model. An animation

builder enables the user to build a Graphical User Interface (GUI) that allows real-time

inputs and monitoring of system parameters when the controller is running. The

hardware connection editor is used to designate connections between the I/O ports on the

front of the AC-104 and data paths within the code running on the controller. The

RealSim environment allows models developed in SystemBuild to be run in real-time,

connecting to real hardware for real-time simulation, rapid prototyping, and hardware-in-

88

the-loop modeling. The RealSim environment is managed using the GUI depicted in

figure 35. [Ref. 18]

TttutScix GCH

asstoö?«»

©cwKpJLl«
aattrf

 , ggsgggt

ir;iiiigmBBaSSittC.."..

Vjr—C'-is^Trci;.

3$st»

K»2c öiäSei

■■■3E3tit".:

S4ä#swssS&!ie^äSK

ftsajess a sBgaysasw

■ sau ■•■If-■
■Kw». ': *

mm^mmmsmmm$ßi$$

Figure 35. RealSim Graphical User Interface [Ref. 18]

As can be seen from figure 35, the RealSim GUI provides a flow chart approach

to the process of developing an executable file to be run on the AC-104, also referred to

as the target controller. Once the left and right paths of the flow chart are completed, the

RealSim software on the host PC generates an executable code which is downloaded to

the target controller via file transfer protocol (FTP). Detailed instructions for building a

new model are presented in section 3.6 of reference 18. Detailed instructions for building

a GUI for a new model using the animation builder are presented in section 4.3 of

reference 18, and the remaining step reflected in the RealSim GUI are presented in detail

in chapter 5 of reference 18.

89

3. AC-104 System Description

The RealSim AC-104 real-time hardware controller is based on a small, 8" x

5.75", highly integrated PC motherboard that includes a PC/104 expansion connector. It

uses PC/104 UO boards and optional Industry Pack (IP) modules mounted on the

Rex/104 IP carrier for the PC/104 bus [Ref. 19]. The AC-104 configuration used in the

PvFTPS ground station included an AM16/12 (AIM1612) 16 channel analog input board

installed in port PI, an IP-68332 is a general purpose 68332 micro-controller module

installed in port P3, an IP-Serial Port module installed in port P6, and a Ruby-MM 8

channel analog output board installed in port P8. The AC-104 front panel arrangement is

presented in figure 36. [Ref. 18]

m si*

— I -3

EAT

PI m m m m » P? PS
-€&—i i—ffl-j i CO i r— S—I r CD"1! t AC i r-*-

^Ü

■&■

mwT^\9^Am .fci i^iii'mi i

;_J t CD ' »-S-1 «—©-

FLsmr
KTTT: D rH MIM MMIH 11-3

mk ®m mm s i^ ^ EH
A£40f

Figure 36. AC-104 Front Panel Arrangement

90

a. Ruby 8 Digital to Analog Converter Module

The Ruby-MM digital-to-analog converter (DAC) module in the AC-104

replaced the IP-DAC module installed in the C-30 real-time controller. In order utilize

the existing command channels of the Futaba controllers and the established

configuration of the communications box wiring, it was necessary to determine the

mapping of the Ruby-MM DAC front panel connector pin arrangement to that of the EP-

DAC as installed in the C-30 real-time controller. The Ruby-MM DAC front panel

connector pin arrangement is presented as table 6-6 in section 6.3.5 of reference 19, and

relevant portions are repeated here in table 2.

Futaba
Slave

SCSI Cable Ruby DAC I/O
(AC-104 Front Panel)

Function IP-DAC
(C-30 Front Panel)

C-30 to
Comm Box

Cable
DB-91 - 50-pinj - 50-pinJ -

Pin# Wire*2 Pin# - Pin# Wire#^
1 2 26 DAC Ch 1 2 3
2 4 27 DAC Ch 2 8 15
3 6 28 DAC Ch 3 14 27
4 8 29 DAC Ch 4 20 39
5 Disconnected - - - -

6 Disconnected - - - -

7 Disconnected 30 DAC Ch 5 26 2
8 Disconnected 31 DAC Ch 6 32 14
9 1,3,5,7 1,2,3,4 Analog GND 1,7,13,19,25,31 1,13,25,37,49,12

1 - Pins 5,6,7,8 not connected to DB-9 connector installed in Futaba Slave Unit
2 - SCSI 50-pin ribbon cable-numbering convention used
3 - Centronix pin numbering convention used

Table 2. Pinout Map for Conversion from C-30 IP-DAC to AC-104 Ruby DAC

The legacy cable from the C-30 based RFTPS that was used to connect the

50-pin connector from the IP-DAC to the 9-pin connector on the Futaba slave was

analyzed using a multimeter, and the findings are presented in table 2. The functions of

91

the active pins in the IP-DAC cable were determined from an archived copy of the IP-

DAC front panel connector pin arrangement to be DAC channels 1 through 6. Inspection

of the Futaba slave revealed that only pins 1 through 4 and 9 are connected on the 9-pin

serial connector installed on the controller. The corresponding pins for the six DAC

channels on the front panel connector for the Ruby-MM DAC were identified, and new

cable was constructed to connect the correct DAC channels from the AC-104 Ruby-MM

DAC connector to the Futaba slave. The associated pin and wire numbers are listed in

the three leftmost columns of table 2. Note that only DAC channels 1 through 4 are

connected with the new cable due to the Futaba slave connector configuration.

The new cable was verified to be correct by connecting the AC-104 to the

RFTPS communications box and Futaba controllers and running a know executable on

the real-time controller. Because the original executable was developed for the IP-DAC

of the C-30, the executable was modified via the Hardware Connection Editor (HCE) by

designating the Ruby-MM DAC as the output device vice the IP-DAC.

The appropriate offset and scaling factor were entered for a voltage range of 0 to 5 volts

in accordance with table 6-3 of section 6.3.1 of reference 19. Additionally, the J4

hardware jumpers were set appropriately for the 0 to 5 volt range in accordance with

table 6-5 of section 6.3.3. When the updated executable was run, the expected results

were observed.

b. AIM Analog to Digital Converter Module

The AIM analog-to-digital Converter (ADC) input module was also

investigated in anticipation of receiving analog voltages from four pressure transducers

92

installed in the AGAS, one for each PMA. A simple model consisting of a single unity

gain block was constructed using SystemBuild. The AIM ADC was designated as the

input device via the HCE, and a simple GUI was built to display the numerical values of

the input voltages. A cable was built to connect the AIM ADC to a voltage reducer that

interfaces with the pressure transducers on the AGAS. Table 6-21 in section 6.5.6 of

reference 19 was consulted to determine the correct pin arrangement for the cable. The

board was operated using single-ended channels and the default bipolar voltage range of

±10 volts. With the executable running on the AC-104, all four of the PMAs were

inflated and deflated. The voltages representing PMA pressures were displayed on the

controller GUI and corresponded well with expected values.

93

THIS PAGE INTENTIONALLY LEFT BLANK

94

LIST OF REFERENCES

1. Yakimenko, O., Kaminer, I., and Lentz, W., "A Three Point Algorithm for Attitude
and Range Determination using Vision," paper presented at the American Control
Conference, Chicago, Illinois, 28 June 2000.

2. Kaminer, I.I., AA4276: Avionics System Design, Lecture Notes, Naval Postgraduate
School, Monterey, CA, January 2000.

3. Watson, Mark T., Vision Guidance Controller for an Unmanned Aerial Vehicle,
Master's Thesis, Naval Postgraduate School, Monterey, California, December 1998.

4. Schmidt, L., Introduction to Aircraft Flight Dynamics, pp. 2-3, American Institute of
Aerodynamics and Astrodynamics, 1998.

5. Haralick, R.M., Lee, C, Ottenberg, K., Nolle, M., "Analysis and Solutions of the
Three Point Perspective Pose Estimation Problem," Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 1991, pp. 592-598.

6. Hallert, B., Photogrammetry, McGraw-Hill Book Company, Inc., 1960.

7. Eastman Kodak Company, "Digital Learning Center."
[http://www.kodak.com/US/en/digital/dlc/book4/chapterl/index.shtmll.July2000.

8. The Math Works, Inc., MATLAB Image Processing Toolbox User's Guide, Version 2,
1998.

9. Kuhn, K., "Conventional Analog Television."
[http://www.ee.washington.edu/conselec/CE/kuhn/ntsc/95x4.htmJ.May 1996.

10. Froncillo, S.J., Design of Digital Control Algorithms for Unmanned Air Vehicles,
Master's Thesis, Naval Postgraduate School, Monterey, California, March 1998.

11. Komlosy, J.A., Applications of Rapid Prototyping to the Design and Testing ofUAV
Flight Control Systems, Master's Thesis, Naval Postgraduate School, Monterey,
California, March 1998.

12. Rivers, T.C., Design and Integration of a Flight Management System for the
Unmanned Air Vehicle FOG-R, Engineer's Thesis, Naval Postgraduate School,
Monterey, California, December 1998.

13. Infrared Components Corporation, MB IRES IMAGE CLEAR ™Operator's Manual,
Utica, New York.

14. Trimble GPS, AgGPS 124/132 Operator's Manual.

95

15. Dellicker, S.H., Low Cost Parachute Guidance, Navigation, and Control, Master's
Thesis, Naval Postgraduate School, Monterey, California, September 1999.

16. Williams, T.A., Optimal Parachute Guidance, Navigation, and Control for the
Affordable Guided Airdrop System (AGAS) , Master's Thesis, Naval Postgraduate
School, Monterey, California, June 2000.

17. Hallberg, E., Kaminer, I., and Pascoal, A., "Development of a Flight Test System for
Unmanned Air Vehicles," IEEE Control Systems, v. 19, pp. 55-65, February 1999.

18. Integrated Systems, Incorporated, RealSim User's Guide, Sunnyvale, California,
February 1999.

19. Integrated Systems, Incorporated, RealSim PC Controller System Reference,
Sunnyvale, California, February 1999.

96

APPENDIX A. DOCUMENTED MATLAB CODE

1. CONTROLLER.M

% LCDR Paul A. Ghyzel, USN
% September 2000
% Thesis: "Vision-Based Navigation for Unmanned Air Vehicles"
%
% This program is intended to determine the X-Y coordinates of the centroids
% of the three "hot spots" used for visual navigation of the FOG-R UAV.
%
% SUBROUTINE HEIRARCHY
% la. averagebox.m
% a. imnorm.m
% b. showbrightest.m
% c. nextbox.m
% lb. filterbox.m
% a. imnorm.m
% b. imfilter.m
% c. findxy.m
% i. finddiff.m
% d. plotstem.m
% e. nextbox.m
% lc. definebox.m
% a. show_peaks.m
% i. imnorm.m
% 2. imnorm.m
% 3. findcenter.m
% a. weightedcenter.m
% 4. plotcentroid.m
% 5. nextbox.m
% 6. sortijl23.m
% 7. ij2uv.m
%
% Analysis Plots:
% 8. plotcenter.m
% 9. plotthreshold.m
% 10. plotboxheightwidth.m
% 11. plotimagetime.m
% 12. plotthreshtime.m
%
% Additionally, the images to be processed must be:
% 1. located in the same folder as these program files;
% 2. 480 x 640
%

%%%%%%%%

clc
clear
delete controller.dat
diary controller.dat
tic

97

%%%
% PROGRAM CONSTANTS
%
filename = 'picture';
filetype = '.bmp'; % '.bmp', '.jpg', '.tif
igrowth = .7; % percent of axis norm by which search box grows;

% "short" set up -> 0.7, "long" -> 0.35
jgrowth = .2; % default -> 0.2
vtol =6; % vertical pixel tolerance: # of pixels considered in
same spot
htol =4; % horizontal pixel tolerance, these values also hard-coded

% in findcenter.m
threshold = .9; % initial threshold

%%%
% INITIALIZATION
%
first_img =25; % number of first image to process (25)
last_img = 506; % number of last image to process (506)
%
no_imgs = last_img - first_img + 1; % total number of images to process
img_no = first_img;
center = [];
box = [] ;
centroidtime = [];
img_time = [] ;

%%%
% READ IMAGE FROM FILE AND NORMALIZE
%
I = imread([filename, num2str (img_no) , filetype]);
I = imnorm(I);

%%%
% DEFINE FIRST PROCESSING BOX
%
newbox = averagebox(I, filename, img_no, filetype); % no a priori knowledge
%newbox = filterboxd, filename, img_no, filetype, vtol, htol);

% auto, define 1st box
%newbox = defineboxd, filename, img_no, filetype); % manually define 1st box

%%%
% PROCESS SEQUENCE OF INDIVIDUAL IMAGES
%
start_process = toe-
while img_no < (first_img + no_imgs)

clc
fprintf(['\n Processing image: ',num2str(img_no-first_img+l) , ' of

',num2str(no_imgs)])
start_img = toe;

I = imread([filename, num2str(img_no), filetype]); % read image from file
I = imnorm(I); % converts intensity values to scale from 0 to 1
box = [box; newbox]; % captures search box parameters for current image
[brightpoints,peakcenter,threshold,vtol,htol,centroidtime] =

findcenter (threshold, I,newbox, vtol,htol,centroidtime) ,-
center = [center; img_.no peakcenter(1,:) peakcenter(2,:) peakcenter(3,:)

threshold];
stop_img = toe;
img_time = [img_time; stop_img-start_img];
% plotcentroid(filename, filetype, img_no, brightpoints, newbox, threshold,

98

peakcenter)
img_no = img_no + 1;
newbox = nextbox{peakcenter,igrowth,jgrowth); % resize search box

end %while
elapsed_time = toe;

%%%
% DATA TRANSFORMATION
%
centerij = sortijl23(center); % sorts points into 1-2-3 order for 3 pt alg.
centeruv = [centerij(:,1) ij2uv(centerij(:,2:3)) ij2uv(centerij(: ,4:5))

ij2uv(centerij(:,6:7))],-

% ANALYSIS
%
fprintf(['\n\n Number of images processed: ', num2str(no_imgs)])
fprintf(['\n Mean time per image: ', num2str(mean(img_time)),' seconds'])
fprintf(['\n Total elapsed time: ', num2str(fix(elapsed_time/60)),' minutes

'])
fprintf([num2str(((elapsed_time/60)-fix(elapsed_time/60))*60) , ' seconds\n'])

% SUMMARY PLOTS
% Note: Comment these out to save time if performing multiple runs
%
%plotcenter(centerij,igrowth,jgrowth,box)
%plotboxheightwidth(box,no_imgs,first_img)
%plotthreshold(centerij, first_img, no_imgs)
%plotimagetime(first_img, no_imgs, img_time)
%plotthreshtime(first_img, center, no_imgs, img_time)

%%%
% SAVE DATA TO FILES
% Note: Comment these out to protect good previously computed data
%
%delete centerij.mat
%save centerij centerij
%delete centeruv.mat
%save centeruv centeruv

%%%
diary off

2. AVERAGEBOX.M

function newbox = averagebox(I, filename, img_no, filetype)

clc
start = toe;
fprintf('\n Searching for hotspots. \n')
points=5;
spot=7 ,-
xpic=640;
ypic=480;
smooth=3; % half-width of siding window
smoothmin=l+smooth; % 4
smoothmax=xpic-smooth; % 637

99

for i = ypic:-l:l
row=I(i, :) ;
av=mean(row);
row=max(row-av,0);

% index from bottom to top of image (480->l)
% individual row of pixel intensity values

% replaces the element with the greater of
the 2 arguments

% if element > av, replace with diff, else
replace with 0

for ctr=smoothmin:smoothmax % defines range of row elements on which
window centered

ss=0;
for dsm = -smooth:smooth % add all of the values inside the window

together
ss=ss+row(ctr+dsm); % note: all original values that were < av

are now 0
end
row(ctr)=row(ctr)-ss/(smooth+1); % subtract the "new avg" from the

original value of window center
end

row=max(row, 0) ;
av=mean(row);
st=std(row);
row=max(row-av-10*st, 0)

corim(481-i,:)=row;

% sets all negative values equal to 0
% computes average of "new" row
% standard deviation
% result: row element that is > 10 std dev

above average
% will be positive, else it will be set to 0
% builds matrix from each "row" in rev order

from bottom to top of image array
end
[II,Jl] = find(corim > 0);
II = 480*ones(length(Il),1)-II; % converts row coordinates in uv to ij
%%%

fin=zeros(points, 4) ;

for i=l:points
[colmax,rowloc]=max(corim); % colmax: max value for each col;

% rowloc: row index of max value of each
column

[fin(i,4),fin(i,2)]=max(colmax); % place max value of colmax in ith row,
4th col of fin

% place col index of colmax max in ith
% row, 2nd col of fin
% place row index of colmax max in ith

row, 1st col of fin
% these 4 lines define a box around a
% bright point,
% inside which pixel intensities are set
% to zero

fin(i,1)=rowloc(fin(i,2));

mma=max(fin(i,1)-spot,1);

mmi=min(fin(i,1)+spot,ypic);

mla=max(fin(i,2)-spot, 1) ;
mli=min(fin(i,2)+spot,xpic);

for yl=mma:mmi

for xl=mla:mli
corim(yl,xl)=0;

end

% this loop sets equal to zero the pixels in
% "corim" that are inside the box defined above

end
end

centeru = fin(:,2); % extracts column coordinates of 5 points in uv format

100

centerv = fin(:,l); % extracts row coordinates of 5 points in uv format
12 = 480*ones (points, 1)-centeru; % converts row coordinates in uv to ij
J2 = centerv;
%%%
for ii=l:points % adds the distances from pt ii to all other points

% together and stores them. The points with the 3
for jj=l:points % smallest sums are points of interest.

fin(ii,3)= fin(ii,3)+sqrt((fin(ii,1)-fin(jj,1))A2+(fin(ii,2)-
fin(jj,2))A2);

end
end
fin = sortrows(fin,3);

%%%
centeru = fin(1:3,2); % extracts column coordinates of 3 points in uv format
centerv = fin(l:3,l); % extracts row coordinates of 3 points in uv format
centeri = 480*ones(3,1)-centerv; % converts row coordinates in uv to ij
centerj = centeru;
center = [centeri centerj]; % ij coordinates of 3 spots of interest
center = sortrows(center);
fprintf(['\n Time to locate 3 hotspots: ', num2str(toe-start) , ' seconds
\n'])

igrowth = .3;
j growth = .3;
newbox = nextbox(center,igrowth,jgrowth);

%%%

3. DEFINEBOX.M

function newbox = definebox(I, filename, img_no, filetype)

% Read image from file

%I = imread([filename,num2str(img_no),filetype]); %read in image
%I = rgb2gray(I); % makes image array compatible dimension for

% image processing functions
figure

intcontour (1,10)
grid on
title([filename,num2str(img_no),filetype])
xlabel('j'); ylabel('i')
zoom on
fprintf('\nPlace a zoom box around the points of interest.\n')
fprintfCHit return when done.\n\n')
pause
j = round(get(gca,'XLim'));
i = round(get(gca,'YLim'));
imin = i(1)
imax = i(2)
jmin = j(1)
jmax = j(2)
close

newbox = [imin, imax, jmin, jmax];
show_peaks(I, filename, filetype, img_no, imin, imax, jmin, jmax);

101

%%%

4. FELTERBOX.M

function newbox = filterbox(I, filename, img_no, filetype, vtol, htol)

clc

%%%

% FILTER IMAGE
%
fprintf('\n Filtering first image. \n')
start = toe;
I = imfilter(I);
fprintf(['\n Time to filter first image: ', num2str(toe-start),' seconds
\n'])

%%%

threshold = .45;
imin = 1 ;
imax = 480;
jmin = 1;
jmax = 640;
box = [imin imax jmin jmax];
igrowth = . 3;
j growth = . 3;

fprintf('\n Determining location of spots in first image and establishing first
search box. \n')
boxstart = toe;
[spots,polycenter,diff] = findxyd, box, threshold, vtol, htol) ,-
%plotstem(filename, img_no, diff, imin, imax, jmin, jmax, filetype)
newbox = nextbox(polycenter,igrowth,jgrowth);
boxstop = toe;
fprintf(['\n Time required to compute first search box: ',num2str(boxstop-
boxstart),' seconds. \n'])

5. FINDCENTER.M

function [brightpoints,center,threshold,vtol,htol,centroidtime] =
findcenter(threshold,I,box,vtol,htol, centroidtime)

%%%
% INITIALIZATION
%
imin = box(l)
imax = box (2)
jmin = box(3)
jmax = box(4)
vtolO = 6
htolO = 4
spots =0; % counter, a spot consists of all pixels w/in box defined by vtol

% & htol
lothresh = .4; % initial minimum threshold
hithresh =1; % initial maximum threshold

102

%threshold = .9; % initial threshold
laps =0; % prevents auto decrease of threshold first time in loop
C = zeros(180,2,20);
%%%

while (spots -= 3)
C(:, :,1:3)=0;
% ADJUST THRESHOLD IN RESPONSE TO NUMBER OF SPOT %%%%%%%%%%%%%%%%%%%%%%%%%%
if (spots < 3 & laps > 0) % decrease threshold, will not enter first

% time in loop
hithresh = threshold; % when 'spots' is always less than 3
threshold = (threshold + lothresh)12;

end % if
if spots > 3 % increase threshold

lothresh = threshold;
threshold = (hithresh + threshold)12 ;

end % if
if (threshold - lothresh <= 0.005) | (hithresh - threshold <= 0.005)

% prevent inf loop
fprintf('\n ***** unable to isolate 3 points. Increasing spot

tolerance. * * * * *\n\n')
vtol = vtol + vtolO
htol = htol + htolO
if vtol >100 | htol > 50

vtol = vtolO; % reset vtol to initial value
htol = htolO; % reset htol to initial value
break

end % if
end % if

laps = 1;
starttime = toe; % time hack to note start of loop at a given threshold
brightpoints = []; % all points in Izoom that exceed threshold
center = []; % array of spot centroids

%%
% FIND ALL PIXELS IN Izoom WHOSE INTENSITY EXCEEDS THRESHOLD
Izoom = I(imin:imax, jmin:jmax); % portion of original image, I,

% inside zoom box
[row,col] = finddzoom > threshold); % find all pixels in Izoom that

% exceed threshold
while isempty(row) % decrease threshold if no points found in Izoom

hithresh = threshold;
threshold = (threshold + lothresh)12;
[row,col] = find(Izoom > threshold);

end % while % exit when at least 1 pixel found in Izoom that exceeds
% current threshold

%%%
hotpoints = sortrows([row,col]); % row sort of pixels that exceed

% current threshold
morepoints = 1; % BOOLEAN: 1 = true, 0 = false
spots =0; % reset spot counter to zero
brightpoints(:,1) = hotpoints(:,1) + imin - 1;

% convert local(Izoom) index to image index
brightpoints(:,2) = hotpoints(:,2) + jmin - 1;

% convert local (Izoom) index to image index
spotdim = [];

103

%%%
% SEPARATE PIXELS IN hotpoints INTO SPOTS
while (morepoints == 1) & (spots <= 3) % TRUE if there are hotpoints that

% don't yet belong to a spot
spots = spots + 1;
morepoints = 0; % reset FALSE until pixels are found that don't

% belong to a spot
hotptsize = size(hotpoints);
no_rows = hotptsize(1,1);
firstpoint = hotpoints(1,:);
currentspot = firstpoint;
holdingspot = []; % used to "collect pixels" outside vtol/htol of

% current spot
thisrow = 1;
nextrow = thisrow + 1;

%%%
% DETERMINE IF PIXEL BELONGS IN currentspot OR PUT IN holdingspot TO ASSIGN

TO OTHER SPOT
while (nextrow <= no_rows) & (spots <= 3)

thisi = hotpoints(thisrow,1);
thisj = hotpoints(thisrow,2);
thispoint = hotpoints(thisrow,:);
nexti = hotpoints(nextrow,1);
nextj = hotpoints(nextrow,2);
nextpoint = hotpoints(nextrow,:);
idiff = abs(nexti - thisi);
jdiff = abs(nextj - thisj);.
if (idiff <= vtol & jdiff <= htol)

currentspot = [currentspot; nextpoint];
thisrow = nextrow;
nextrow = thisrow + 1;

else
morepoints = 1;
holdingspot = [holdingspot; nextpoint];
nextrow = nextrow + 1;

end % if/else
end % while % exit when all remaining pixels have been evaluated

%%%
[r,c] = size(currentspot);
C(l:r,l:c,spots) = currentspot; % buffer to hold each spot in

% individual 2x2 array
hotpoints = holdingspot; % reassign "leftover" pixels to hotpoints for

% assignment to new spot
end %while % exit when there are no more pixels that need to be assigned

% to a spot

%%%%
end % while

for s = 1:spots
[r,c] = find(C(:,:,s) -= 0);
center(s,:) = weightedcenter(Izoom,C(1:max(r),1:2,s)) + [imin-1 jmin-1];

%compute centroid
end
center = sortrows(center);
%%%

104

6. FINDDIFF.M

function [spots, diff] = finddiff(I,threshold,box)

imin = box(l)
imax = box(2)
jmin = box(3)
jmax = box(4)

fit_order = 2;

[row,col] = size(I);
jstart = jmin + 10;
jend = jmax - 10;
spots = [];
diff = [];
for i = imin:imax

ifar = I(i,:);
j = jstart:jend;
p = polyfit(j,ifar(j),fit_order);
f = polyvaKp, j) ;
% insert Plot Routine 1 here if desired

[y,x] = max(ifar(j) -f>;
jpeak = x + jstart;
diff = [diff; i jpeak y];
if y > threshold

spots = [spots; l DPe
end %if

end %for
%hold off

istart = imin;
iend = imax;

for j = jmin:jmax
j far = I (:,j);
i = istart:iend;
p = polyfit(i,jfar(i)',fit_order);
f = polyval(p,i);
% insert Plot Routine 2 here if desired

[y,x] = max(jfar(i)'-f) ;
ipeak = x + istart;
diff = [diff; ipeak j y];
if y > threshold

spots = [spots; ipeak j];
end %if

end %for
spots = sortrows(spots);

105

% Plot Routine 1

% if i == 42
% figure(i)
% plot(j,ifar(j),'k+',j,f,'k.-')
% axis([jstart jend 0 1])
% xlabel('Pixel Column')
% ylabeK'Relative Intensity')
% title(['Row: ',num2str(i) , ', Fit order: ',num2str(fit_order)])
% legend('actual data','curve fit')
% grid on
% hold on
% end %if, Plot Routine 1

% Plot Routine 2

% if j == 204
% figure(j)
% plot(i,jfar(i),'bd',i,f,'r*-')
% grid on
% axis([istart iend 0 1])
% title (['Column: ' ,nuiti2str (j) , ' , Fit order: ' ,num2str (f it_order)])
% end %if
%%%

7. FINDXY.M

function [spots, center,diff] = findxyd, box, threshold, vtol, htol)

[hotpoints,diff] = finddiff(I,threshold, box) ;

imin = box(l)
imax = box(2)
jmin = box(3)
jmax = box(4)

morepoints = 1; %BOOLEAN: 1 = true, 0 = false
spot = 0;
spots = hotpoints;

while morepoints == 1 %true
spot = spot + 1;
morepoints = 0;
hotptsize = size(hotpoints) ;
no_rows = hotptsize(1,1);
firstpoint = hotpoints(1,:);
currentspot = firstpoint;
holdingspot = [] ;
thisrow = 1;
nextrow = thisrow + 1;
while (nextrow <= no_rows)
thisi = hotpoints(thisrow,1);
thisj = hotpoints (thisrow, 2) ,-
thispoint = hotpoints(thisrow,:);
nexti = hotpoints(nextrow,1);
nextj = hotpoints(nextrow,2);
nextpoint = hotpoints(nextrow, :) ;
idiff = abs(nexti - thisi);

106

jdiff = abs(nextj - thisj);
if (idiff <= vtol & jdiff <= htol)

currentspot = [currentspot; nextpoint];
thisrow = nextrow;
nextrow = thisrow + 1;

else
morepoints = 1;
holdingspot = [holdingspot; nextpoint];
nextrow = nextrow + 1;

end % if/else
end % while
[r,c] = size(currentspot);
C(l:r,l:c,spot) = currentspot; % buffer to hold each spot in individual 2x2

% array
hotpoints = holdingspot; % zeroize currentspot

end %while
for s = l:spot

[r,c] = find(C(:,:,s) -= 0);
center(s,:) = weightedcenter(I,C(l:max(r) , 1:2,s)) + [imin-1 jmin-1];

%compute centroid
end
center = sortrows(center);
%%%

8. U2UV.M

% This function transforms a 2-column matrix of ij coordinates to a
% 2-column matrix of uv coordinates. It assumes imax = 480 and jmax = 640.

function uv = ij2uv(ij)

[r,c] = size(ij);

uv(:,l) = ij(:,2) - 320*ones(r,1);
uv(:,2) = 240*ones(r,l) - ij(:,l);
%%%

9. MFILTER.M

function If = iinf ilter (In)

[r,c] = size(In);
% Weibull Distribution
x = 1: r ;
lambda =1.8; % larger values decrease variance
sigma = 60;
fW = (((lambda*x)/(sigma'v2)).^(lambda-1)).*exp(-((x/sigma).^lambda));
fW = fW/max(fW);
W = diag(fW);

% Gaussian Distribution - apply to columns
x = l:c;
sigma =30;
mu = 220;
fN = (l/(sigma*sqrt(2*pi)))*exp(-0.5*((x-mu)/sigma).^2);
fN = fNAmax(fN);
G = diag(fN);

107

% Composite Filter
If = W'*In*G;

If = mat2gray(If);

% folder Picture lambda(W) sigma(W) sigma(G) mu(G)
%
% timel747... 1 1.8 100 75 320
% turning 4 2 40 30 170
% fltl_174505... 25 1.8 60 30 220

10. IMNORM.M

function In = imnorm(I)

In = double(rgb2gray(I))/255;
%%%

11. NEXTBOX.M

function box = nextbox(center, igrowth, jgrowth)

mini = min(center(:,1)) ;
maxi = max(center(:,1));
minj = min<center(:,2));
maxj = max(center(: , 2)) ;

inorm = norm(maxi - mini);
jnorm = norm(maxj - minj);

imin = floor(mini - inorm*igrowth);
imax = ceil(maxi + inorm*igrowth);
jmin = floor(minj - jnorm*jgrowth);
jmax = ceiKmaxj + jnorm* jgrowth) ;

if imin < 1
imin = 1;

end %if
if imax > 480

imax = 480;
end %if
if jmin < 1

jmin = 1 ;
end %if
if jmax > 640

jmax = 640;
end %if

box = [imin, imax, jmin, jmax];

108

12. PLOTBOXHEIGHTWIDTH.M

function plotboxheightwidth(box,no_imgs,first_img)

index = first_img:(first_img + no_imgs - 1);
di = box(:,2)-box(:,1);
dj = box(:,4)-box(:,3);

figure
plot(index,dj,'k+',index,di,'k.')
grid on
axis([first_img (first_img + no_imgs - 1) 0 max(dj)])
xlabel('Frame Number')
ylabeK 'Pixels')
title('Search Box Dimension Size')
legend('width','height',2)

%%%

13. PLOTCENTER.M

function plotcenter(center,igrowth,jgrowth,box)

frame = center(:,1);
il = center(:,2)
jl = center(:,3)
i2 = center(: ,4)
j2 = center(:,5)
i3 = center(:,6)
j3 = center(:,7),

figure
subplot(1,2,1)

plot(frame,il,'r.',frame,±2,'g.',frame,i3,'b.',frame,box(:,1),'m',
frame,box(:,2),'m')

axis ij
%axis([framed) frame (length (frame)) 0 480])
grid on
xlabel('Frame Number')
ylabel('Pixel Row (i)')
title(['Row position (i) of hotspots, igrowth = ',num2str(igrowth)])
legend('il','i2','i3','box')

subplot(1,2,2)
plot(jl,frame, 'r.',j2,frame,'g.', j3,frame, "b.',box(:,3),frame,'m',box(:,4),

frame,'m')
axis ij
%axis([0 640 framed) frame (length (frame))])
grid on
ylabel('Frame Number')
xlabel('Pixel Column (j)')
title(['Column postion (j) of hotspot, jgrowth = ',nura2str(jgrowth)])
legend('jl','j2','j3','box')

109

i = [ii ±: 13];
J = [jl js J3];
Imin = [],
Imax = [],
Jmin = [] ,
Jmax = [],
for p = 1- length(il)

Imin = [Imin; min(I(p,
Imax = [Imax; max(I(p,
Jmin = [Jmin; min(J(p,
Jmax = [Jmax; max(J(p,

end % for

))]
))]
))]
))]

dell = Imax - Imin;
delJ = Jmax - Jmin;

dellmin = -diff(Imin)./dell(1:(length(dell)-1))
dellmax = diff(Imax)./dell(1:(length(dell)-1));
delJmin = -diff (Jmin) ./delJd: (length (delJ)-1))
delJmax = diff (Jmax) ./delJd: (length(delJ)-1)) ;
x = framed) : length (dellmin)+frame (1) -1;

figure
subplot(2,1,1)

plot(x,100*dellmin,'b',x,100*dellmax,'r')
grid on
axis([framed) length(dellmin)+frame(1)-1 -igrowth*100 igrowth*100])
title('Expansion of box top/bottom boundaries as % of (i_m_a_x - i_m_i_n)')
legend('top','bottom',-1)
yläbel('Percent Expansion')
xlabel('Frame')

subplot(2,1,2)
plot(x,100*delJmin,'b',x,100*delJmax,'r')
grid on
axis([framed) length(dellmin)+frame(l)-1 -jgrowth*100 jgrowth*100])
title('Expansion of box left/right boundaries as % of (j_m_a_x - j_m_i_n)')
legend Cleft' , 'right' ,-1)
ylabel('Percent Expansion')
xlabel('Frame')

%%%

110

14. PLOTCENTROID.M

function p = plotcentroid(filename, filetype, img_no, spots, box, threshold,
center)

imin = box(1>;
imax = box(2) ;
jmin = box(3);
jmax = box(4);

f igure(img_no)
plot(spots(:,2),spots(:,1),'k. ')
axis ij
axis([jmin jmax imin imax])
grid on
titlet['Hotspot Centroid Location, File: ',

filename,num2str(img_no),filetype,'
','Threshold: ',num2str(threshold)])

xlabel('Pixel Column (j)')
ylabel('Pixel Row (i)')
hold on

plot(center(:,2),center(:,1), 'k+')
hold off
legend('> threshold', 'centroid',1)

15. PLOTMAGETIME.M

function plotimagetime(first_img, no_imgs, img_time)

figure
plot([first_img:(first_img+no_imgs-l)],img_time, 'k.')
axis([first_img (first_img+no_imgs-l) 0 1])
grid on
title('Time to process individual images')
xlabel('Frame Number')
ylabel('Time (seconds)')

16. PLOTSTEM.M

function p = plotstem(filename,img_no, diff, imin, imax, jmin, jmax, filetype)

figure
stem3(diff(:,1), diff(:,2), diff(:,3),'k.','fill')
axis([imin imax jmin jmax 0 1]) ;
grid on;
az = 90;
el = 0;
view([az el]) ;
title(['Composite Polynomial Fit-Difference

(',filename,num2str(img_no),filetype,')'])
xlabel('Pixel Row')
ylabel('Pixel Column')
zlabel('Pixel Intensity')

%%%

111

17. PLOTTHRESHOLD.M

function plotthreshold(center, first_img, no_imgs)

figure
plot(center(:,1),center(:,8), 'k. ')
grid on
xlabel('Frame number')
ylabel('Threshold')
axis([first_img (first_img + no_imgs-l) 0 1])
title('Final 3-point Threshold')

%%%

18. PLOTTHRESHTIME.M

function plotthreshtime(first_img, center, no_imgs, img_time)

figure
plot(center(:,1),center(:,8),'r.',center(:,1),img_time, 'b. ')
axis([first_img (first_img+no_imgs-l) 0 1])
grid on
xlabel('Frame Number')
ylabel('Time (seconds) / Threshold')
title('Final 3-point Threshold & Processing Time')
legend('threshold','time',4)

%%%

19. SHOWPEAKS.M

function show_peaks(I,filename,filetype,img_no, imin, imax, jmin, jmax)

I = I(imin:imax,jmin:jmax) ;:

figure(99)
surfe(I') % 3D surface plot with 2D contour beneath
axis([0 (imax-imin) 0 (jmax-jmin)])
title([filename,num2str(img_no),filetype])
az =77; % viewpoint azimuth, experimentally determined
el =12; % viewpoint elevation, (reset to 16)
view([az, el]) % sets viewpoint azimuth and elevation
xlabel('Pixel Row')
ylabel('Pixel Column')
zlabel('Pixel Luminance')

%%%

112

20. SHOWBRIGHTEST.M

function showbrightest(filename, img_no, filetype, centerj, centeri)

I = imread([filename, num2str(img_no), filetype]); % read image from file

figure
imshow (I)
hold
plot(centerj,centeri,'r+')
axis ij
axis([0 640 0 480])
grid on
title(['Five Brightest Spots in '.filename, num2str(img_no), filetype])
legend('bright spot')

k%5

21. SHOWCENTER.M

function showcenter (img_.no)

load centerij.mat
filename = 'picture';
filetype = '.bmp'; % '-bmp', '.jpg', '.tif

I = imread([filename, num2str(img_no), filetype]); % read image from file

k = find(centerij(:,l)==img_no);

i = [centerij(k,[2,4,6])];
j = [centerij(k,[3,5,7])];

figure
imshow(I)
hold
plot(j,i,'ro')
hold
title([filename, num2str(img_no), filetype])

%%%

113

22. SORTÜ123.M

function centerijl23 = sortijl23(centerij)

[r,c] = size(centerij);

for row = 1: r
abc = [centerij(row,2:3);

centerij(row,4:5);
centerij(row,6:7)] ;

i = find(abc(: ,2) == min(abc(: ,2))) ; % find element of abc that has minimum
% value of j

pt3 = abc (i, 1:2) ,-
ptl2 = abc(find(abc(:,2) -= pt3(2)),1:2);
i = find(ptl2(:,l) == max(ptl2(:,1)));
ptl = ptl2(i,l:2);
pt2 = ptl2(find(ptl2(:,l) -= ptl(1)),1:2) ;
centerij(row,2:7) = [ptl pt2 pt3];

end %for

centerij123 = centerij;
%%%

23. WEIGHTEDCENTER.M

function p = weightedcenter(I, spot)

[row,col] = size(spot);
for r = 1:row

brightness(r) = I(spot(r,1),spot(r,2));
wspot(r,:) = spot(r,:)»brightness(r);

end %for
p(l,l) = sum(wspot(: ,1)) /sum(brightness) ,-
p(l,2) = sum(wspot(:,2))/sum(brightness);
%%%

114

INITIAL DISTRIBUTION LIST

Defense Technical Information Center.
8725 John J. Kingman Rd., Suite 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library
Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5101

3. Doctor Isaac I. Kaminer, Code AA/KA
Department of Aeronautics and Astronautics
Naval Postgraduate School
Monterey, CA 93943-5121

Doctor Oleg A. Yakimenko, Code AA/YA...
Department of Aeronautics and Astronautics
Naval Postgraduate School
Monterey, CA 93943-5121

Doctor Russell Duren, Code AA/DR
Department of Aeronautics and Astronautics
Naval Postgraduate School
Monterey, CA 93943-5121

6. Doctor Conrad F. Newberry, Code AA/NE
Department of Aeronautics and Astronautics
Naval Postgraduate School
Monterey, CA 93943-5121

7. Department of Aeronautics and Astronautics ..
Code AA
Naval Postgraduate School
Monterey, CA 93943-5106

8. Lieutenant Commander Paul A. Ghyzel, USN
14815 Cranoke Street
Centreville, VA 20120

115

